
Confidential

Revving Up: The
Journey to Pwn2Own
Automotive 2024
Alex Plaskett & McCaulay Hudson
September 2024

2

/who

Alex Plaskett (@alexjplaskett)
NCC Group Exploit Development Group
(EDG)

McCaulay Hudson (@_mccaulay)
NCC Group Exploit Development Group
(EDG)

https://twitter.com/alexjplaskett
https://twitter.com/_mccaulay

3

What is Pwn2Own?

• Yearly vulnerability research competitions held by Trend Micro (ZDI -
Zero Day Initiative)
• Pwn2Own Desktop (March)
• Pwn2Own Mobile (October/November)
• Pwn2Own Automotive (Jan 2024)

• First edition
• Goal of the competition is to compromise a certain set of targets
• Prizes vary based on expected difficulty of the target
• ZDI purchase vulnerabilities / exploits

• Provide directly to the vendors to fix the issues

4

Pwn2Own Tokyo Venue (Automotive World at the Tokyo Big Site)

5

Pwn2Own Automotive Targets
Electric Vehicle Chargers

In-Vehicle Infotainment (IVI) Operating Systems

Tesla

6

Pwn2Own Automotive 2024 Rules

https://www.zerodayinitiative.com/blog/2023/8/28/revealing-the-targets-and-rules-for-the-first-
pwn2own-automotive

• Require unauthenticated code execution on the devices
• 3 attempts

• 10 minutes per attempt
• Expanded so attacks which require physical presence

are also in scope
• Hardware attacks are important for preparation but not

allowed in the competition

https://www.zerodayinitiative.com/blog/2023/8/28/revealing-the-targets-and-rules-for-the-first-pwn2own-automotive
https://www.zerodayinitiative.com/blog/2023/8/28/revealing-the-targets-and-rules-for-the-first-pwn2own-automotive

7

NCC Proposed Targets

Alpine Halo9 IFX-F509
✓ Success

Phoenix Contact CHARX
✓ Success

Pioneer DMH-WT7600NEX
✓ Success

Autel MaxiCharger
 Out of time

8

Building Research Environments

• Basic Hardware Lab Requirements
• Safety Precautions
• General Approach

9

Basic Hardware Lab Requirements

• Basics
• Solder Iron
• Hot Air Station
• Multimeter
• Logic Analyzer
• Oscilloscope

• Useful
• Microscope
• BGA Sockets
• Kapton Tape

10

Safety Precautions

• IVIs are easy to setup with a bench top PSU
• EV Chargers have a high voltage component

• Modified the Autel as follows:
• Low voltage and high voltage side of device
• When physically disconnected LV side didn’t start
• Increase separation between HV and LV side

• Allows tester to use low voltage side only outside of
manufacturer designed housing

• Added duel throw switch
• CHARX didn’t need any modification

• ZDI Published a detailed guide here:
https://www.zerodayinitiative.com/blog/202
3/11/8/how-to-modifying-ev-chargers-for-
benchtop-experiments

https://www.zerodayinitiative.com/blog/2023/11/8/how-to-modifying-ev-chargers-for-benchtop-experiments
https://www.zerodayinitiative.com/blog/2023/11/8/how-to-modifying-ev-chargers-for-benchtop-experiments
https://www.zerodayinitiative.com/blog/2023/11/8/how-to-modifying-ev-chargers-for-benchtop-experiments

11

General Approach

Confidential

In-Vehicle
Infotainment (IVI)

13

Alpine Halo9 iLX-F509

• Attack Surface
• External Services
• Connectivity + Peripherals

• Hardware
• Teardown
• Identification
• eMMC Dumping

• Software
• Command Injection #1
• Firmware Encryption
• Command Injection #2

14

Alpine Halo9 iLX-F509

15

IVI Attack Surfaces

• Network Services
• Ethernet
• Ethernet over USB
• WiFi
• Cellular (SIM)

• Drivers
• WiFi
• USB Protocol
• Bluetooth
• Filesystems
• Radio
• Microphone

• Multimedia
• Videos
• Images
• Audio

• Applications
• Apple Carplay/Google Android

Auto
• Web Browser
• Debug Functionality
• OEM Applications
• Network Communications
• File Parsing / Handling

• Firmware Updates

16

External Services

Port Service
2086/tcp /usr/bin/framework-service
3490/tcp dlt-daemon (Diagnostic Log and Trace)

5355/tcp /lib/systemd/systemd-resolved
30515/tcp /usr/bin/aoa_con_server_proc
5353/udp /usr/sbin/mdnsd

17

Connectivity + Peripherals

Sound Control (Blueooth)

18

Hardware Teardown
Board #1 Board #2

19

Component Identification

Dolphin+, TCC8034, O?, ?-8, 2243 -
Telechips Processor (Telechips

Intelligent Automotive Solution for
Autonomous Vehicle & ADAS System)

SK Hynix, H26M52208FPRA, e-
NAND, 305A, M18VP913QC1 -

16GB eMMC5.1 1ynm 64Gb
153ball FBGA, SK hynix e-NAND

Product Family eMMC5.1
Compatible

https://www.telechips.com/eng/product/automotive.php
https://www.telechips.com/eng/product/automotive.php
https://www.telechips.com/eng/product/automotive.php
https://www.datasheets.com/en/part-details/h26m52208fpr-sk-hynix-inc-98770818#datasheet
https://www.datasheets.com/en/part-details/h26m52208fpr-sk-hynix-inc-98770818#datasheet
https://datasheet.lcsc.com/lcsc/2204261415_SK-HYNIX-H26M62002JPR_C3002776.pdf
https://datasheet.lcsc.com/lcsc/2204261415_SK-HYNIX-H26M62002JPR_C3002776.pdf
https://datasheet.lcsc.com/lcsc/2204261415_SK-HYNIX-H26M62002JPR_C3002776.pdf

20

eMMC Pin-out (on PCB)

• Logic analyzer capture

21

Dumping eMMC Flash (BGA deadbug)

22

CarByShell – Command Injection

• Command Injection via USB
filename

• File SHA-256 hash command
• Avoiding filename restrictions
• Triggering code path
• Demo

23

CarByShell – File SHA-256 hash command

• CarByCar functionality
allows you to customise
the boot screen image

• /usr/bin/updatemgr scans
“RL00036A” directory in
USB

• SHA-256 hash of the
h264 splash image is
created via a system
command

24

CarByShell – Triggering code path

• Triggers on boot
• Triggers on usb inserted
• Triggers on “Settings” -> “System” -> “About/Software Update” ->

“Car by Car Update”

25

CarByShell – File SHA-256 hash command

26

CarByShell – File SHA-256 hash command injection

27

CarByShell – Filename restrictions

• Filename restrictions: &, |, <, >, \, etc
• Solution: Eval HTTP response from HTTP server

28

CarByShell – Payload web server

29

CarByShell – Root shell

30

Firmware Encryption

• Only over-the-air (OTA) firmware
was encrypted
• eMMC dump was plaintext

• OTA Downloads
• ZIP File
• collective_sign_info.dat

• Reversed file formats

31

Firmware Encryption and Signing

• Only over-the-air (OTA) firmware was encrypted
• eMMC dump was plaintext

• OTA Downloads
• “RLDEFAULT_A.23.D0.05.00.01.00” – ZIP File
• “RLDEFAULT_A.23.D0.05.00.01.00_2” – collective_sign_info.dat

32

Firmware Encryption - collective_sign_info.dat

33

Firmware Encryption – Files

• udp_pkg.sig – RSA SHA-256 Signature
• host_info.dat – Partially encrypted data
• pkg_info.sig – RSA SHA-256 Signature

34

Firmware Encryption – host_info.dat

35

Firmware Encryption – /usr/bin/updatemgr

• 2x Hardcoded AES-128 Key
• AES-128 IV = “0000000000000000”

36

Firmware Encryption – host_info.dat (Decrypted)

37

Firmware Encryption – ZIP File

• Unzip with password: “0123456789”
• Files

• a7kernel.pak (Encrypted/Compressed Binary)
• a7rootfs.pak (Encrypted/Compressed Binary)
• boot.pak (Encrypted/Compressed Binary)
• kernel.pak (Encrypted/Compressed Binary)
• mcu.pak (Encrypted/Compressed Binary)
• rootfs.dat (Text)
• rootfs.pak1 (Partial Encrypted/Compressed Binary)
• rootfs.pak2 (Partial Encrypted/Compressed Binary)
• rootfs.pak3 (Partial Encrypted/Compressed Binary)
• rootfs.pak4 (Partial Encrypted/Compressed Binary)
• rootfs.pak5 (Partial Encrypted/Compressed Binary)
• rootfs.pak6 (Partial Encrypted/Compressed Binary)
• versions.dat (Text)

38

Firmware Encryption – rootfs.dat

39

Firmware Encryption – versions.dat

40

Firmware Encryption – Decryption Tool

41

Firmware Encryption – Decryption Tool

42

Firmware Encryption and Signing

• AES-128 for encryption
• Keys were hardcoded into

/usr/bin/updatemgr
• IV was in host_info.dat

• RSA SHA-256 signature verification using
public key /etc/gda_public.key

• ZIP password (012345678) encrypted in
host_info.dat (alternatively, wordlist brute
force in seconds!)

43

BrokenPass – Command Injection

• Update file parsing
• 7zip command injection
• Signature verification bypass
• Trigger software update via USB

44

BrokenPass – Command Injection via ZIP Password

45

BrokenPass – Command Injection via ZIP Password

46

BrokenPass – Command Injection via ZIP Password

47

BrokenPass – Command Injection via ZIP Password

48

BrokenPass – Command Injection via ZIP Password

• Some update files are signed
• How can we bypass them?

49

BrokenPass – Command Injection via ZIP Password

• Bypass package information signature check
• Skipped if “force upd file” exists

50

BrokenPass – Command Injection via ZIP Password

• Bypass package information signature check
• Gets force upd filepath and checks if it exists

51

BrokenPass – Command Injection via ZIP Password

• Bypass package information
signature check

• Decrypted hard-coded
encrypted string

• = “ForceUpdate.bin”
• Appends that to <usb>

filepath

52

BrokenPass – Command Injection via ZIP Password

53

BrokenPass – Command Injection via ZIP Password

54

BrokenPass – Command Injection via ZIP Password (Decrypted)

• Decrypted host_info.dat

55

BrokenPass – Command Injection via ZIP Password

56

BrokenPass – Command Injection via ZIP Password

57

BrokenPass – Command Injection via ZIP Password

58

BrokenPass – Command Injection via ZIP Password

59

BrokenPass – Command Injection via ZIP Password

60

But can it run DOOM?

• Controlling the screen
• Implementing DOOM generic
• Touch screen input
• Live demo

61

Porting Doom to the IVI

• Controlling the screen via
the framebuffer /dev/fb1

62

Porting Doom to the IVI

• Based on https://github.com/ozkl/doomgeneric
• DG_Init – Create frame buffer graphics image
• DG_DrawFrame – Render DOOM to screen
• DG_SleepMs - Sleep in milliseconds
• DG_GetTicksMs - The ticks passed since launch in milliseconds
• DG_GetKey – Convert touch to DOOM key

• Rendered using frame buffer and fbg library (https://github.com/grz0zrg/fbg)

https://github.com/ozkl/doomgeneric
https://github.com/grz0zrg/fbg

63

Porting Doom to the IVI – DG_DrawFrame

• Copy the frame from DOOM generic to the frame buffer

64

Porting Doom to the IVI – Touch input

• /dev/input/touchscreen0
• Linux input_event structure

• Touch up/down event
• Touch X/Y event

• Single touch point only

65

Porting Doom to the IVI – Touch input

66

Live Demo: Running Doom

67

Alpine Halo9 iLX-F509 (Doom RCE demo)

https://youtu.be/uM384qFApic?feature=shared&t=129

https://youtu.be/uM384qFApic?feature=shared&t=129

68

Alpine “Patches”

• ZDI – “Alpine conducted a Threat
Assessment and Remediation Analysis
(TARA) in accordance with ISO21434, and
concluded that the vulnerability is
classified as "Sharing the Risk". Alpine
states that they will continue to use the
current software without a releasing
patch.”

Confidential

EV Charger

70

Phoenix Contact CHAR SEC-3100

71

Target Device

Phoenix Contact - CHARX SEC-3100 • Build your own EV charging infrastructure from
components!

72

Attack Surface Research

• Physical Interfaces
• Device State
• External Services

73

CHARX SEC-3100 Physical Interfaces

SIM

WAN (eth0)

LAN (eth1)

USB (usb0)

MicroSD

74

Device State (Server vs Client)

• Serial client/server group (daisy chain)
• Different services exposed
• Different outbound communication
• Attacker Perspective

• Trigger server -> client by running
DHCP server on 192.168.4.0/24

• Trigger client -> server by setting
System.name to ev3000

75

External Services

Port Service WAN Server LAN Server WAN Client LAN Client
22/tcp SSH ✓ ✓ ✓

80/tcp CharxWebsite Frontend ✓ ✓ ✓

81/tcp HTTP ✓ ✓

502/tcp Modbus Server ✓

1883/tcp Mosquitto ✓ ✓

4444/tcp HTTP CharxControllerAgent ✓ ✓ ✓

4999/tcp Web Socket ✓ ✓

5000/tcp HTTP CharxWebsite ✓ ✓ ✓

5001/tcp HTTP CharxSystemConfigManager ✓ ✓

9999/tcp HTTP CharxUpdateAgent ✓

123/udp NTP ✓

5353/udp mDNS ✓ ✓ ✓ ✓

76

CHARX Custom Services

• HTTP
• CharxWebsite (80/tcp)

• HTTP REST JSON
• CharxWebsite (5000/tcp)
• CharxControllerAgent (4444/tcp)
• CharxSystemConfigManager (5001/tcp)

• /api/v1.0/config
• …

• CharxUpdateAgent (9999/tcp)
• /get-update
• /return-database
• /return-logs
• …

77

Reverse Engineering

• Static
• Most custom services/binaries

built with Cython (Python in C)
• Dynamic

• Emulation in QEMU

78

Reverse Engineering (Compiled Cython)

• “Cython translates Python code to C/C++ code,
but additionally supports calling C functions
and declaring C types on variables and class
attributes.”[1]

[1] https://github.com/cython/cython

• Approximately 4,000 lines of boiler plate C code
• Each line of Python is approximately 50 lines of C code
• 1 line “Hello World” in Python = 4,187 lines of C code
• Reversing is significantly harder, but not impossible

https://github.com/cython/cython

79

Reverse Engineering (Compiled Cython) – Ghidra Script

• Ghidra script to automate:
• Find/retype symbols
• Retyping function

signatures
• Retyping string

constants and add them
as a comment

• Dump strings table
(__pyx_string_tab)

80

Reverse Engineering (Compiled Cython) – Ghidra Script

• Reconstructing Python from strings and variable reuse logic
• Enough to find vulnerabilities?

81

QEMU Emulation

• ELF 32-Bit ARM
• sudo apt-get install qemu-arm
• Extract _CHARX-SEC-3XXX-

Software-Bundle-
V1.4.2.raucb.extracted/squashfs-
root/root

• sudo chroot phoenix/ /bin/sh

ID="charx"
NAME="CHARX control Embedded Linux"
VERSION="1.4.2 (warrior)"
VERSION_ID="1.4.2"
PRETTY_NAME="CHARX control Embedded Linux 1.4.2
(warrior)"
BUILD_ID="release+1448.20230908.129861fd.7e14fd1"

82

QEMU Service Execution

• Deploy config files
• Edit debug options
• Start services running

• = Semi working emulated
environment without physical
device

83

Compromising CHARX

• Execute shell script via config
injection

• Server mode
• Upload arbitrary file contents

• Client mode
• Configure Cellular Network
• ppp Injection

• Server mode
• Reboot

84

Compromising CHARX - Uploading Arbitrary File Contents
• POST http://<charx-ip>:9999/return-database
• Stores file to /data/charx-update-agent/upload/jupicore_abcd.db with executable permissions (-rwxrwxrwx)
• Validation occurs on filename, however no validation on file contents

85

Compromising CHARX - Uploading Arbitrary File Contents

• Use this primitive to upload the following script file
• Plants the script on the filesystem, however, is not automatically executed yet

86

Compromising CHARX - Server to client mode

• Trigger server mode to client mode by running DHCP server on 192.168.4.0/24

87

Compromising CHARX - Config Injection

• CharxSystemConfigManager (5001/tcp) allows
setting config values in /data/charx-system-config-
manager/system-user-configuration.ini

• CelluarNetwork section values are copied to the
pppd (point-to-point protocol) config file
/etc/ppp/peers/charx-provider

• New line characters are not allowed
• ppp parses multiple options in the same line

separated by a space

88

Compromising CHARX - Config Injection

89

Compromising CHARX - Config Injection

• POST: http://<charx-ip>:5001/api/v1.0/<section>/<name>
Section Name Value
CellularNetwork apn everywhere
CellularNetwork useaccesscredentials True
CellularNetwork username eesecure
CellularNetwork password secure
CellularNetwork pin 1111
CellularNetwork defaultroute True
CellularNetwork idledisconnect 3600 welcome /data/charx-update-agent/upload/jupicore_abcd.db

connect /data/charx-update-agent/upload/jupicore_abcd.db init
/data/charx-update-agent/upload/jupicore_abcd.db

CellularNetwork enabled True

90

Compromising CHARX - Client to server mode

• POST: http://<charx-ip>:5001/api/v1.0/<section>/<name>
Section Name Value
System name ev3000

91

Compromising CHARX - Trigger reboot

• POST: http://<charx-ip>:5001/api/v1.0/reboot

92

Compromising CHARX – CVE-2024-25994 (ZDI-24-867)

• “An unauthenticated remote attacker can upload a arbitrary script file due to
improper input validation. The upload destination is fixed and is write only.”

Severity: 5.3 (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N)
VDE-2024-011 | CERT@VDE

https://www.zerodayinitiative.com/advisories/ZDI-24-867/
https://cert.vde.com/en/advisories/VDE-2024-011/

93

Compromising CHARX – CVE-2024-25995 (ZDI-24-856)

• “An unauthenticated remote attacker can modify configurations to perform a
remote code execution due to a missing authentication for a critical function.”

Severity: 9.8 (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H)
VDE-2024-011 | CERT@VDE

https://www.zerodayinitiative.com/advisories/ZDI-24-856/
https://cert.vde.com/en/advisories/VDE-2024-011/

94

Failures

• Make sure you have multiple devices
• Alpine IVI Brick reballing the BGA
• Autel MaxiCharger – Bricked, we don’t know what went wrong ☺

95

Conclusion

• At Pwn2Own all the EV chargers
were hacked.
• Pretty simple bugs too..

• Automotive competition is one of
the most accessible currently

• Large attack surface
• Lots of interfaces /

connectivity
• Research access can be

challenging
• Needs to be done safely (high

voltages)

96

Credits

• ZDI
• For running a great competition!

• Phoenix Contact PSIRT
• Patched issues quickly and

responsive comms
• NCC

• Phoebe Queen
• Jameson Hyde
• James Chambers
• Liz James
• Andy Davis
• Rob Wood
• Felipe Zimmerle

	Slide 1
	Slide 2: /who
	Slide 3: What is Pwn2Own?
	Slide 4: Pwn2Own Tokyo Venue (Automotive World at the Tokyo Big Site)
	Slide 5: Pwn2Own Automotive Targets
	Slide 6: Pwn2Own Automotive 2024 Rules
	Slide 7: NCC Proposed Targets
	Slide 8: Building Research Environments
	Slide 9: Basic Hardware Lab Requirements
	Slide 10: Safety Precautions
	Slide 11: General Approach
	Slide 12
	Slide 13: Alpine Halo9 iLX-F509
	Slide 14: Alpine Halo9 iLX-F509
	Slide 15: IVI Attack Surfaces
	Slide 16: External Services
	Slide 17: Connectivity + Peripherals
	Slide 18: Hardware Teardown
	Slide 19: Component Identification
	Slide 20: eMMC Pin-out (on PCB)
	Slide 21: Dumping eMMC Flash (BGA deadbug)
	Slide 22: CarByShell – Command Injection
	Slide 23: CarByShell – File SHA-256 hash command
	Slide 24: CarByShell – Triggering code path
	Slide 25: CarByShell – File SHA-256 hash command
	Slide 26: CarByShell – File SHA-256 hash command injection
	Slide 27: CarByShell – Filename restrictions
	Slide 28: CarByShell – Payload web server
	Slide 29: CarByShell – Root shell
	Slide 30: Firmware Encryption
	Slide 31: Firmware Encryption and Signing
	Slide 32: Firmware Encryption - collective_sign_info.dat
	Slide 33: Firmware Encryption – Files
	Slide 34: Firmware Encryption – host_info.dat
	Slide 35: Firmware Encryption – /usr/bin/updatemgr
	Slide 36: Firmware Encryption – host_info.dat (Decrypted)
	Slide 37: Firmware Encryption – ZIP File
	Slide 38: Firmware Encryption – rootfs.dat
	Slide 39: Firmware Encryption – versions.dat
	Slide 40: Firmware Encryption – Decryption Tool
	Slide 41: Firmware Encryption – Decryption Tool
	Slide 42: Firmware Encryption and Signing
	Slide 43: BrokenPass – Command Injection
	Slide 44: BrokenPass – Command Injection via ZIP Password
	Slide 45: BrokenPass – Command Injection via ZIP Password
	Slide 46: BrokenPass – Command Injection via ZIP Password
	Slide 47: BrokenPass – Command Injection via ZIP Password
	Slide 48: BrokenPass – Command Injection via ZIP Password
	Slide 49: BrokenPass – Command Injection via ZIP Password
	Slide 50: BrokenPass – Command Injection via ZIP Password
	Slide 51: BrokenPass – Command Injection via ZIP Password
	Slide 52: BrokenPass – Command Injection via ZIP Password
	Slide 53: BrokenPass – Command Injection via ZIP Password
	Slide 54: BrokenPass – Command Injection via ZIP Password (Decrypted)
	Slide 55: BrokenPass – Command Injection via ZIP Password
	Slide 56: BrokenPass – Command Injection via ZIP Password
	Slide 57: BrokenPass – Command Injection via ZIP Password
	Slide 58: BrokenPass – Command Injection via ZIP Password
	Slide 59: BrokenPass – Command Injection via ZIP Password
	Slide 60: But can it run DOOM?
	Slide 61: Porting Doom to the IVI
	Slide 62: Porting Doom to the IVI
	Slide 63: Porting Doom to the IVI – DG_DrawFrame
	Slide 64: Porting Doom to the IVI – Touch input
	Slide 65: Porting Doom to the IVI – Touch input
	Slide 66: Live Demo: Running Doom
	Slide 67: Alpine Halo9 iLX-F509 (Doom RCE demo)
	Slide 68: Alpine “Patches”
	Slide 69
	Slide 70: Phoenix Contact CHAR SEC-3100
	Slide 71: Target Device
	Slide 72: Attack Surface Research
	Slide 73: CHARX SEC-3100 Physical Interfaces
	Slide 74: Device State (Server vs Client)
	Slide 75: External Services
	Slide 76: CHARX Custom Services
	Slide 77: Reverse Engineering
	Slide 78: Reverse Engineering (Compiled Cython)
	Slide 79: Reverse Engineering (Compiled Cython) – Ghidra Script
	Slide 80: Reverse Engineering (Compiled Cython) – Ghidra Script
	Slide 81: QEMU Emulation
	Slide 82: QEMU Service Execution
	Slide 83: Compromising CHARX
	Slide 84: Compromising CHARX - Uploading Arbitrary File Contents
	Slide 85: Compromising CHARX - Uploading Arbitrary File Contents
	Slide 86: Compromising CHARX - Server to client mode
	Slide 87: Compromising CHARX - Config Injection
	Slide 88: Compromising CHARX - Config Injection
	Slide 89: Compromising CHARX - Config Injection
	Slide 90: Compromising CHARX - Client to server mode
	Slide 91: Compromising CHARX - Trigger reboot
	Slide 92: Compromising CHARX – CVE-2024-25994 (ZDI-24-867)
	Slide 93: Compromising CHARX – CVE-2024-25995 (ZDI-24-856)
	Slide 94: Failures
	Slide 95: Conclusion
	Slide 96: Credits

