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/who

Alex Plaskett (@alexjplaskett)
NCC Group Exploit Development Group
(EDG)

McCaulay Hudson (@_mccaulay)
NCC Group Exploit Development Group 
(EDG)

https://twitter.com/alexjplaskett
https://twitter.com/_mccaulay
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What is Pwn2Own?

• Yearly vulnerability research competitions held by Trend Micro (ZDI - 
Zero Day Initiative) 
• Pwn2Own Desktop (March)
• Pwn2Own Mobile (October/November)
• Pwn2Own Automotive (Jan 2024)

• First edition
• Goal of the competition is to compromise a certain set of targets
• Prizes vary based on expected difficulty of the target
• ZDI purchase vulnerabilities / exploits

• Provide directly to the vendors to fix the issues
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Pwn2Own Tokyo Venue (Automotive World at the Tokyo Big Site)
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Pwn2Own Automotive Targets
Electric Vehicle Chargers

In-Vehicle Infotainment (IVI) Operating Systems

Tesla
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Pwn2Own Automotive 2024 Rules

https://www.zerodayinitiative.com/blog/2023/8/28/revealing-the-targets-and-rules-for-the-first-
pwn2own-automotive

• Require unauthenticated code execution on the devices
• 3 attempts

• 10 minutes per attempt
• Expanded so attacks which require physical presence 

are also in scope
• Hardware attacks are important for preparation but not 

allowed in the competition

https://www.zerodayinitiative.com/blog/2023/8/28/revealing-the-targets-and-rules-for-the-first-pwn2own-automotive
https://www.zerodayinitiative.com/blog/2023/8/28/revealing-the-targets-and-rules-for-the-first-pwn2own-automotive
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NCC Proposed Targets

Alpine Halo9 IFX-F509
✓ Success

Phoenix Contact CHARX
✓ Success

Pioneer DMH-WT7600NEX
✓ Success

Autel MaxiCharger
 Out of time
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Building Research Environments

• Basic Hardware Lab Requirements
• Safety Precautions
• General Approach
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Basic Hardware Lab Requirements

• Basics
• Solder Iron
• Hot Air Station
• Multimeter
• Logic Analyzer
• Oscilloscope 

• Useful
• Microscope
• BGA Sockets
• Kapton Tape
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Safety Precautions

• IVIs are easy to setup with a bench top PSU 
• EV Chargers have a high voltage component

• Modified the Autel as follows:
• Low voltage and high voltage side of device
• When physically disconnected LV side didn’t start
• Increase separation between HV and LV side

• Allows tester to use low voltage side only outside of 
manufacturer designed housing 

• Added duel throw switch
• CHARX didn’t need any modification

• ZDI Published a detailed guide here: 
https://www.zerodayinitiative.com/blog/202
3/11/8/how-to-modifying-ev-chargers-for-
benchtop-experiments

https://www.zerodayinitiative.com/blog/2023/11/8/how-to-modifying-ev-chargers-for-benchtop-experiments
https://www.zerodayinitiative.com/blog/2023/11/8/how-to-modifying-ev-chargers-for-benchtop-experiments
https://www.zerodayinitiative.com/blog/2023/11/8/how-to-modifying-ev-chargers-for-benchtop-experiments
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General Approach
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Alpine Halo9 iLX-F509

• Attack Surface
• External Services
• Connectivity + Peripherals

• Hardware
• Teardown
• Identification
• eMMC Dumping

• Software
• Command Injection #1
• Firmware Encryption
• Command Injection #2



14

Alpine Halo9 iLX-F509
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IVI Attack Surfaces

• Network Services
• Ethernet
• Ethernet over USB
• WiFi
• Cellular (SIM)

• Drivers
• WiFi
• USB Protocol
• Bluetooth
• Filesystems
• Radio
• Microphone

• Multimedia
• Videos
• Images
• Audio

• Applications
• Apple Carplay/Google Android 

Auto
• Web Browser
• Debug Functionality
• OEM Applications
• Network Communications
• File Parsing / Handling

• Firmware Updates
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External Services

Port Service
2086/tcp /usr/bin/framework-service
3490/tcp dlt-daemon (Diagnostic Log and Trace)

5355/tcp /lib/systemd/systemd-resolved
30515/tcp /usr/bin/aoa_con_server_proc
5353/udp /usr/sbin/mdnsd
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Connectivity + Peripherals

Sound Control (Blueooth)
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Hardware Teardown
Board #1 Board #2



19

Component Identification

Dolphin+, TCC8034, O?, ?-8, 2243 - 
Telechips Processor (Telechips

Intelligent Automotive Solution for 
Autonomous Vehicle & ADAS System)

SK Hynix, H26M52208FPRA, e-
NAND, 305A, M18VP913QC1 -

16GB eMMC5.1 1ynm 64Gb 
153ball FBGA, SK hynix e-NAND 

Product Family eMMC5.1 
Compatible

https://www.telechips.com/eng/product/automotive.php
https://www.telechips.com/eng/product/automotive.php
https://www.telechips.com/eng/product/automotive.php
https://www.datasheets.com/en/part-details/h26m52208fpr-sk-hynix-inc-98770818#datasheet
https://www.datasheets.com/en/part-details/h26m52208fpr-sk-hynix-inc-98770818#datasheet
https://datasheet.lcsc.com/lcsc/2204261415_SK-HYNIX-H26M62002JPR_C3002776.pdf
https://datasheet.lcsc.com/lcsc/2204261415_SK-HYNIX-H26M62002JPR_C3002776.pdf
https://datasheet.lcsc.com/lcsc/2204261415_SK-HYNIX-H26M62002JPR_C3002776.pdf
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eMMC Pin-out (on PCB) 

• Logic analyzer capture 
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Dumping eMMC Flash (BGA deadbug)
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CarByShell – Command Injection

• Command Injection via USB 
filename

• File SHA-256 hash command
• Avoiding filename restrictions
• Triggering code path
• Demo
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CarByShell – File SHA-256 hash command

• CarByCar functionality 
allows you to customise 
the boot screen image

• /usr/bin/updatemgr scans 
“RL00036A” directory in 
USB

• SHA-256 hash of the 
h264 splash image is 
created via a system 
command
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CarByShell – Triggering code path

• Triggers on boot
• Triggers on usb inserted
• Triggers on “Settings” -> “System” -> “About/Software Update” -> 

“Car by Car Update”
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CarByShell – File SHA-256 hash command



26

CarByShell – File SHA-256 hash command injection
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CarByShell – Filename restrictions

• Filename restrictions: &, |, <, >, \, etc
• Solution: Eval HTTP response from HTTP server
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CarByShell – Payload web server
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CarByShell – Root shell
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Firmware Encryption

• Only over-the-air (OTA) firmware 
was encrypted
• eMMC dump was plaintext

• OTA Downloads
• ZIP File
• collective_sign_info.dat

• Reversed file formats
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Firmware Encryption and Signing

• Only over-the-air (OTA) firmware was encrypted
• eMMC dump was plaintext

• OTA Downloads
• “RLDEFAULT_A.23.D0.05.00.01.00” – ZIP File
• “RLDEFAULT_A.23.D0.05.00.01.00_2” – collective_sign_info.dat
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Firmware Encryption - collective_sign_info.dat
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Firmware Encryption – Files

• udp_pkg.sig – RSA SHA-256 Signature
• host_info.dat – Partially encrypted data
• pkg_info.sig – RSA SHA-256 Signature
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Firmware Encryption – host_info.dat
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Firmware Encryption – /usr/bin/updatemgr

• 2x Hardcoded AES-128 Key
• AES-128 IV = “0000000000000000”
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Firmware Encryption – host_info.dat (Decrypted)
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Firmware Encryption – ZIP File

• Unzip with password: “0123456789”
• Files

• a7kernel.pak (Encrypted/Compressed Binary)
• a7rootfs.pak (Encrypted/Compressed Binary)
• boot.pak (Encrypted/Compressed Binary)
• kernel.pak (Encrypted/Compressed Binary)
• mcu.pak (Encrypted/Compressed Binary)
• rootfs.dat (Text)
• rootfs.pak1 (Partial Encrypted/Compressed Binary)
• rootfs.pak2 (Partial Encrypted/Compressed Binary)
• rootfs.pak3 (Partial Encrypted/Compressed Binary)
• rootfs.pak4 (Partial Encrypted/Compressed Binary)
• rootfs.pak5 (Partial Encrypted/Compressed Binary)
• rootfs.pak6 (Partial Encrypted/Compressed Binary)
• versions.dat (Text)
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Firmware Encryption – rootfs.dat
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Firmware Encryption – versions.dat
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Firmware Encryption – Decryption Tool
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Firmware Encryption – Decryption Tool



42

Firmware Encryption and Signing

• AES-128 for encryption
• Keys were hardcoded into 

/usr/bin/updatemgr 
• IV was in host_info.dat

• RSA SHA-256 signature verification using 
public key /etc/gda_public.key

• ZIP password (012345678) encrypted in 
host_info.dat (alternatively, wordlist brute 
force in seconds!)
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BrokenPass – Command Injection

• Update file parsing
• 7zip command injection
• Signature verification bypass
• Trigger software update via USB
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BrokenPass – Command Injection via ZIP Password
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BrokenPass – Command Injection via ZIP Password
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BrokenPass – Command Injection via ZIP Password
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BrokenPass – Command Injection via ZIP Password
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BrokenPass – Command Injection via ZIP Password

• Some update files are signed
• How can we bypass them?
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BrokenPass – Command Injection via ZIP Password

• Bypass package information signature check
• Skipped if “force upd file” exists
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BrokenPass – Command Injection via ZIP Password

• Bypass package information signature check
• Gets force upd filepath and checks if it exists
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BrokenPass – Command Injection via ZIP Password

• Bypass package information 
signature check

• Decrypted hard-coded 
encrypted string

• = “ForceUpdate.bin”
• Appends that to <usb> 

filepath
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BrokenPass – Command Injection via ZIP Password
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BrokenPass – Command Injection via ZIP Password
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BrokenPass – Command Injection via ZIP Password (Decrypted)

• Decrypted host_info.dat
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BrokenPass – Command Injection via ZIP Password
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BrokenPass – Command Injection via ZIP Password
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BrokenPass – Command Injection via ZIP Password
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BrokenPass – Command Injection via ZIP Password
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BrokenPass – Command Injection via ZIP Password
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But can it run DOOM?

• Controlling the screen
• Implementing DOOM generic
• Touch screen input
• Live demo
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Porting Doom to the IVI

• Controlling the screen via 
the framebuffer /dev/fb1
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Porting Doom to the IVI

• Based on https://github.com/ozkl/doomgeneric
• DG_Init – Create frame buffer graphics image
• DG_DrawFrame – Render DOOM to screen
• DG_SleepMs - Sleep in milliseconds
• DG_GetTicksMs - The ticks passed since launch in milliseconds
• DG_GetKey – Convert touch to DOOM key

• Rendered using frame buffer and fbg library (https://github.com/grz0zrg/fbg)

https://github.com/ozkl/doomgeneric
https://github.com/grz0zrg/fbg
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Porting Doom to the IVI – DG_DrawFrame

• Copy the frame from DOOM generic to the frame buffer
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Porting Doom to the IVI – Touch input

• /dev/input/touchscreen0
• Linux input_event structure

• Touch up/down event
• Touch X/Y event

• Single touch point only
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Porting Doom to the IVI – Touch input
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Live Demo: Running Doom
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Alpine Halo9 iLX-F509 (Doom RCE demo)

https://youtu.be/uM384qFApic?feature=shared&t=129

https://youtu.be/uM384qFApic?feature=shared&t=129
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Alpine “Patches”

• ZDI – “Alpine conducted a Threat 
Assessment and Remediation Analysis 
(TARA) in accordance with ISO21434, and 
concluded that the vulnerability is 
classified as "Sharing the Risk". Alpine 
states that they will continue to use the 
current software without a releasing 
patch.”
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Phoenix Contact CHAR SEC-3100
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Target Device

Phoenix Contact - CHARX SEC-3100 • Build your own EV charging infrastructure from 
components!
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Attack Surface Research

• Physical Interfaces
• Device State
• External Services
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CHARX SEC-3100 Physical Interfaces

SIM

WAN (eth0)

LAN (eth1)

USB (usb0)

MicroSD
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Device State (Server vs Client)

• Serial client/server group (daisy chain)
• Different services exposed
• Different outbound communication
• Attacker Perspective

• Trigger server -> client by running 
DHCP server on 192.168.4.0/24

• Trigger client -> server by setting 
System.name to ev3000
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External Services

Port Service WAN Server LAN Server WAN Client LAN Client
22/tcp SSH ✓ ✓ ✓

80/tcp CharxWebsite Frontend ✓ ✓ ✓

81/tcp HTTP ✓ ✓

502/tcp Modbus Server ✓

1883/tcp Mosquitto ✓ ✓

4444/tcp HTTP CharxControllerAgent ✓ ✓ ✓

4999/tcp Web Socket ✓ ✓

5000/tcp HTTP CharxWebsite ✓ ✓ ✓

5001/tcp HTTP CharxSystemConfigManager ✓ ✓

9999/tcp HTTP CharxUpdateAgent ✓

123/udp NTP ✓

5353/udp mDNS ✓ ✓ ✓ ✓
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CHARX Custom Services

• HTTP
• CharxWebsite (80/tcp)

• HTTP REST JSON 
• CharxWebsite (5000/tcp)
• CharxControllerAgent (4444/tcp)
• CharxSystemConfigManager (5001/tcp)

• /api/v1.0/config
• …

• CharxUpdateAgent (9999/tcp)
• /get-update
• /return-database
• /return-logs
• …
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Reverse Engineering

• Static
• Most custom services/binaries 

built with Cython (Python in C)
• Dynamic

• Emulation in QEMU
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Reverse Engineering (Compiled Cython)

• “Cython translates Python code to C/C++ code, 
but additionally supports calling C functions 
and declaring C types on variables and class 
attributes.”[1]

[1] https://github.com/cython/cython

• Approximately 4,000 lines of boiler plate C code
• Each line of Python is approximately 50 lines of C code
• 1 line “Hello World” in Python = 4,187 lines of C code
• Reversing is significantly harder, but not impossible

https://github.com/cython/cython
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Reverse Engineering (Compiled Cython) – Ghidra Script

• Ghidra script to automate:
• Find/retype symbols
• Retyping function 

signatures
• Retyping string 

constants and add them 
as a comment

• Dump strings table 
(__pyx_string_tab)
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Reverse Engineering (Compiled Cython) – Ghidra Script

• Reconstructing Python from strings and variable reuse logic
• Enough to find vulnerabilities?



81

QEMU Emulation

• ELF 32-Bit ARM
• sudo apt-get install qemu-arm
• Extract _CHARX-SEC-3XXX-

Software-Bundle-
V1.4.2.raucb.extracted/squashfs-
root/root

• sudo chroot phoenix/ /bin/sh

ID="charx"
NAME="CHARX control Embedded Linux"
VERSION="1.4.2 (warrior)"
VERSION_ID="1.4.2"
PRETTY_NAME="CHARX control Embedded Linux 1.4.2 
(warrior)"
BUILD_ID="release+1448.20230908.129861fd.7e14fd1"
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QEMU Service Execution

• Deploy config files
• Edit debug options
• Start services running 

• = Semi working emulated 
environment without physical 
device 
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Compromising CHARX 

• Execute shell script via config 
injection

• Server mode
• Upload arbitrary file contents

• Client mode
• Configure Cellular Network
• ppp Injection

• Server mode
• Reboot
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Compromising CHARX - Uploading Arbitrary File Contents
• POST http://<charx-ip>:9999/return-database
• Stores file to /data/charx-update-agent/upload/jupicore_abcd.db with executable permissions (-rwxrwxrwx)
• Validation occurs on filename, however no validation on file contents
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Compromising CHARX - Uploading Arbitrary File Contents

• Use this primitive to upload the following script file
• Plants the script on the filesystem, however, is not automatically executed yet
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Compromising CHARX  - Server to client mode

• Trigger server mode to client mode by running DHCP server on 192.168.4.0/24
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Compromising CHARX - Config Injection

• CharxSystemConfigManager (5001/tcp) allows 
setting config values in /data/charx-system-config-
manager/system-user-configuration.ini

• CelluarNetwork section values are copied to the 
pppd (point-to-point protocol) config file 
/etc/ppp/peers/charx-provider

• New line characters are not allowed
• ppp parses multiple options in the same line 

separated by a space
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Compromising CHARX - Config Injection
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Compromising CHARX - Config Injection

• POST: http://<charx-ip>:5001/api/v1.0/<section>/<name>
Section Name Value
CellularNetwork apn everywhere
CellularNetwork useaccesscredentials True
CellularNetwork username eesecure
CellularNetwork password secure
CellularNetwork pin 1111
CellularNetwork defaultroute True
CellularNetwork idledisconnect 3600 welcome /data/charx-update-agent/upload/jupicore_abcd.db 

connect /data/charx-update-agent/upload/jupicore_abcd.db init 
/data/charx-update-agent/upload/jupicore_abcd.db

CellularNetwork enabled True
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Compromising CHARX - Client to server mode

• POST: http://<charx-ip>:5001/api/v1.0/<section>/<name>
Section Name Value
System name ev3000
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Compromising CHARX - Trigger reboot

• POST: http://<charx-ip>:5001/api/v1.0/reboot
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Compromising CHARX – CVE-2024-25994 (ZDI-24-867)

• “An unauthenticated remote attacker can upload a arbitrary script file due to 
improper input validation. The upload destination is fixed and is write only.”

Severity: 5.3 (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:L/A:N)
VDE-2024-011 | CERT@VDE

https://www.zerodayinitiative.com/advisories/ZDI-24-867/
https://cert.vde.com/en/advisories/VDE-2024-011/
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Compromising CHARX – CVE-2024-25995 (ZDI-24-856)

• “An unauthenticated remote attacker can modify configurations to perform a 
remote code execution due to a missing authentication for a critical function.”

Severity: 9.8 (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H)
VDE-2024-011 | CERT@VDE

https://www.zerodayinitiative.com/advisories/ZDI-24-856/
https://cert.vde.com/en/advisories/VDE-2024-011/
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Failures

• Make sure you have multiple devices
• Alpine IVI Brick reballing the BGA
• Autel MaxiCharger – Bricked, we don’t know what went wrong ☺ 
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Conclusion

• At Pwn2Own all the EV chargers 
were hacked. 
• Pretty simple bugs too..  

• Automotive competition is one of 
the most accessible currently 

• Large attack surface
• Lots of interfaces / 

connectivity 
• Research access can be 

challenging
• Needs to be done safely (high 

voltages)
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Credits

• ZDI 
• For running a great competition! 

• Phoenix Contact PSIRT
• Patched issues quickly and 
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• NCC

• Phoebe Queen
• Jameson Hyde
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