A 3-Years Tale of Hacking a
Pwn20wn Target

The Attacks, Vendor Evolution, and Lesson Learned

.Orange Tsai

DE\V/CORE HACK

About This Talk

» Side story while doing Vulnerability Research

1. Not just about how to reverse, how to exploit or 0day show-off
2. More focused on thoughts, attempts and self-introspections

while researching the target

« Push muyself to sort lots of ./tmp/ folders out..

orange@work:~$ 1ls -hv sonos* | merge -to talk.pptx

sSonos—-2020:

a.out dump_key. py gggg
exp.py gpl/
crash.py exp-v2.py log.txt
data extract/ log2.txt
data2/ ff note.txt
data3/ file.crt out/
debug.txt file2.crt out.bin
sonos—2021:
dump / trigger.py note.txt

sonos—-2022:

parse.py
parse2.py

run.sh
run2.sh
tcpdump
smb.py
S

test.cC
test.pcap
test.txt
test.xml
test2.py

tmp/
tmp.txt

Orange Tsai

» Specialize in Web and Application Vulnerability Research
* Principal Security Researcher of DEVCORE

« Speaker at Numerous Top Hacker Conferences

» Selected Awards and Honors:

« 2022 - Champion and "Master of Pwn" of Pwn20wn
« 2021 - Winner of Pwnie Awards "Best Server-Side Bug"
« 2021 - Champion and "Master of Pwn" of Pwn20wn
« 2019 - Winner of Pwnie Awards "Best Server-Side Bug”
« 2018 - 1st place of Top 10 Web Hacking Technigues
« 2017 - 1st place of Top 10 Web Hacking Techniques

why | am Targeting Sonos?

1. Would like to try something different

2. High rewards and no one has pwned it before

Name
Pwn20wn Tokyo 2020
Pwn20wn Austin 2021

Pwn20wn Toronto 2022
Pwn20wn Toronto 2023

Target
Sonos One Speaker
Sonos One Speaker
Sonos One Speaker

Sonos Era 100

Award
40,000 USD
60,000 USD
60,000 USD
60,000 USD

Pwned
0

2
3
?

Before the Journey

* We are more focusing on the application security. As for

low-level views, you can check:

 Hardware Attacks:
 Dumping the Sonos One Smart Speaker by @_pOly _

» Gaining root access on Sonos Play Speakers by @Nicocha30

* Trust-Zone Attacks:
« Smart Speaker Shenanigans by @bl4sty

Pwn20wn Tokyo 2020

Pwn20wn targets

02
End of the Pwn20wn
Registration

2 Weeks

15
We start reviewing
the Sonos

2020 - Our First Year

* We don't have any physical device i(

e Our attempts:
Fuzzing all web inputs
Searching for firmwares

Exploiting the Firmware OTA

Web Interface of Sonos

* Most of the info was collected through fuzzing and the Internet

* Web pages: mainly for showing status and debugging

1. /status 3. /devmode
2. /tools.htm 4. /unlock
« UPNnP: Contains hundreds of SOAP actions
1. AVTransport.play(.) 3. AVTransport. AddURIToQueue(...)

2. AlarmClock.CreateAlarm(...) 4. RenderingControl.SetVolume(...)

00 ool him

Tools for debugging network issues

| Ping

| Ping&

| Traceroute

| Tracerouted

| Mslookup |

| MDNS Announce

Orange

used COMMAND INJECTION !

s
-

1.2.3.4; sleep 5 | $(sleep 5) & sleep 5

It’= not veyry

effective. ..

SoCo: Sonos Controller

SOCO SoCo

zone SoCo('192.168.12.34")
zone.volume 10

zone.play_uri('http://t.co/music.mp3"')

zone.get_current_track_info()['title']

BeginSoftwareUpdate?

SOCO SoCo

zone SoCo('192.168.12.34")
zone.zoneGroupTopology.BeginSoftwareUpdate ((
'UpdateURL', 'https://<my-server>/'],
'Flags', 1],

'ExtraOptions', '']
))

orange@work:~$ sudo ncat -1p 80

GET /?cmaj=71&cmin=1&cbld=... HTTP/1.1
Host: 10.26.0.34

‘ User-Agent: Wget ‘
Connection: close

Collecting Firmwares

* Few firmwares are available on the Internet
* Newer firmwares are not binwalk-able :(
» Brute-forcing download URLs (but we failed)

* The newest and binwalk-able firmware version is 45.1-56150, which is

released on 2018-08-15

http://update-firmware.sonos.com/firmware/Prod/
57.16-41110-v11.9-wzhipjet-GA-1/257.16-41110

BeginSoftwareUpdate

* SOAP action designed for FOTA (Firmware Over-the-Air)
* Wget is interesting!

| Same behavior in the latest version

__ Reverse engineer the old firmware to know morel!

HTTP

HTTP

HTTP

HTTP

execve(2)

&

/bin/anacapad

write(2)

&

/bin/upgrade

read(2)

/var/run/upgradeinfo

read(2) / write(2)

execve(2)

&

/sbin/wget

Attacking Firmware OTA

e Our attempts:
SSRF!

L Can't locate a good local service to exploit i(

Wget (bundled in BusyBox) CVEs / Vulnerabilities

Firmware encapsulating attacks

L Backdooring - Signed with an RSA key stored in the Secure Storage
L Downgrading- Protected with a SHA-256 Crypt hash

? Firmware parser

$58NeHanrecdehym$x9al .1kgod2FMyYGKajtuJztE/cy402GY64dhTwMTGD

Exploiting Firmware Parser

 Just like traditional CTF challenge

L Standalone binary parsing customized formats...

- Buffer Overflow never die... &
L The exploit works on my local QEMU environment but failed with
the latest firmware

L Adjust the offsets/gadgets blindly until the competition end i(

Summarize Our First Year

1. Got an exploit which works on old firmware (2018 ver.)

2. Self-reflections:

__ Fine, it's fair given the two-weeks time frame

__ My reverse skill is still too slow, especially in C++ (

Pwn20wn Austin 2021

 Why are you targeting Sonos again?

__ | dislike the feeling of defeat

| Synacktiv published a detailed article for dumping Sonos memory

by DMA attack
L Canlearn a new skill and understand last year's failure. WAKU WAKU!

MAR) Synacktiv published
the DMA article

AUG) /DI announced the

Pwn20wn targets

01
End of Pwn20wn the
Registration

3 Months

DEVCORE starts | SEP

reviewing Sonos

Dumping the Firmware

« Hardware; Purchased the USB3380 Evaluation Board

__ Mostly sold out, but luckily one of the reseller is based in Taiwan

| Got within 24 hours
« Software: Perform the DMA Attack by @ufrisk/PClLeech

| Stuck for an entire week

'(
L%

MY USBS380EUB X

"The USB interface of the USB3380 is however disabled by default
and the device would need to be flashed before it's enabled”

Struggling with USB3380EVB

* Flashing USB3380EVB:
__ Hard to find mini PCle to Micro USB adaptor

| Personal Computer only has PCle x1, x4, x8, and x16 slots

| Modern Laptop only has M.2 slots

* Mini PCle was only used in laptops during the 2010s
L Borrowed a Lenovo ThinkPad T430s from my friend

-

Removing Wireless WIFI Card to Flash EUB
T e

S 4

BIOS Mini PCle Whitelist... &
WS

1802: Unauthorized wetwork card is plugged in - Power off and remove the network
card (8086/7360/0000/0000) .

System is halted

Bypass BIOS whitelist check

L Downgrade the BIOS
L Jailbreak the BIOS

L_ Flash the custom BIOS image e

2021 - Our Second Year

* No-Brainer attempts:

Reviewed all web debug routes implementations
Reviewed all system(3) / exec*(3) calls
Reviewed all recv(3) / recvfrom(3) / recvmsg(3) on network services

Reviewed all unsafe string operations

L Still overlooked an information leak (my fault &), which played an important

role during the third year's competition

2021 - Our Second Year

e Use the brain to think:

1. Sonos supports lots of audio formats

2. Audio parser are all based on open-source projects
L Fuzzing seems promising, but | prefer discovering bugs with my own eyes
3. Extracting music metadata (such as song title/album/author) could

present a more attractive attack surface @

L Because all the metadata parsers are handcrafted

2021 - My First Bug

size_ t read_size 1;

my_tsclient_read(ctx, &dlen, &read_size, timeval);

dlen (unsigned __1nt8) dlen;
(dlen) {

my_tsclient_read(ctx, &buffer, &dlen, timeval);

i 2A2151%15]1515151%]5]151515]%]0]%

-0V DO buffer

2021 - My First Bug

size_ t read_size 1;

my tsclient r timeval) ;
Y- - wov X0, $ctx K)3

dlen Q@lExxel MOV X1, SP
(dlenléf:j\\MOV X2, SP
MOV X3, Stimeval)

my_tsclient_read(ctx, &buffer, &dlen, timeval);

2021 - My First Bug

size_ t read_size 1;
my_tsclient_read(ctx, &dlen, &read_size, timeval);

dlen (unsigned __1nt8) dlen;
(dlen) {

char *xbuffer alloca(dlen);

my_tsclient_read(ctx, &buffer, &dlen, timeval);

2021 - My First Fake Bug

Hope

Hope

No bug? WTF

No bug? WTF

No bug? WTF Bug was FAKE

Understanding system
leads to real bug

No bug? WTF Bug was FAKE

2021 - My Real Bug

* A bug triggered while parsing a malformed ID3v2 tag

L An ID3v2 tag consists of multiple frames such as TPE1/COMM

1 2 3 4 5 6 7 8 9 10
ID3 magic version | revision | flags D3 size
frame name frame size igelaglSRilele]S

frame data

2021 - My Real Bug

* A bug triggered while parsing a malformed ID3v2 tag
L An ID3v2 tag consists of multiple frames such as TPE1/COMM

__ Integer Underflow due to the calculation of ‘sizeof(string) - 1

1 2 3 4 5 6 7 8 9 10
"ID3" 03 00 BF 00 00 1234
"TPEL1" 00 00 00 00 03 03

"AA..."

size_t string_len frame->size 1;

(obj->unsynchronised_flag) {
(string_len obj->1d3_size) fail;
ret obj->mp3_read(obj, buffer, string_len);
I {

(obj->1d3_s1ize string_len) {
(!obj->mp3_read(obj, buffer, 1))
fail;
*buffer++;
obj->1d3_size-; string_len -;

AAARAAARAARAAARAAAARAAARAAAAAARAAAAAAAAAAAAAF
\AAAAAAAAKAAAAAAAAAAAAAAAAAAAAAAL
\AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL

\AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/
\AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA?

(obj->i1d3_size str1 len)

\AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS
\AAAAAAAAAAARAAAAAAAAAAAAAAAAAAA/

\AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAS

NAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAﬁ
V.V V. V.

2021 - My Real Bug

» Replaced the GOT of ‘strcasecmp’ to ‘system’ to execute commands

__ Really Easy!

Arch: aarcheod-od-1ittle
RELRO: Partial RELRO
Stack:

NX:

PIE:

FORTIFY:

Summarize Our Second Year

1. A good attack surface achieves twice results with half

the effort

2. Self-reflections:
| Spent too much time blindly trying on the wrong path i(

__ Perhaps | should give fuzzing a try?

| Always read the manual carefully... &

Pwn20wn Toronto 2022

 Why are you targeting Sonos again and again?

L Low cost, high return! This year must be the same &
L 2020: 2 weeks black-boxing
L 2021 1 week for hardware + 2 weeks for reversing/exploiting = 60K USD
L 2022: (Spoiler) Spend FULL THREE MONTHS on this target...

Pwn20wn Toronto 2022

» Before the competition, | am chatting with @FidgetingBits at
HITCON CMT 2022:

@FidgetingBits: "Sonos has already enabled all binary protections”

@orange_8361: "???2?2?2?"

Arch:
RELRO:
Stack:
NX:
PIE:

FORTIEFY:

aarchod-o64-11ttle
Full RELRO

Canary found

NX enabled

PIE enabled
Fnabled

WTF?

2022 - Our Third Year

» Continue to explore our last year's good attack surface

2022 - Our Third Year

 Arbitrary size alloca(3) while parsing MP4 FTYP box

Box Header
Size (4) | Type (4) Box Header = 8 Bytes

Box Data (N) Box Data

N Bytes

Box Size

8 + N bytes

bool mp4_parse_ftyp(void *ctx, void *s, size_t box_size)

{

(box_size 7) A
rsize s->read_mp4(stream, tmp, 8);
(rsize 8) {
box_size box_size 8;

char *buffer alloca(box_size);

rsize s->read_mp4 (stream, buffer, box_size);

Arbitrary Size alloca(3)?

OXFFFFFFFFFFFFFFFF

Unused

Local Variable

Return Address

Local Variable

Return Address

Current Stack Frame

Caller's Stack Frame

Arbitrary Size alloca(3)?

OXFFFFFFFFFFFFFFFF

Unused

Size_trzie
char tmp[8]
Stack Canary
Return Address

Local Variable

Return Address

Stack Pointer

Current Stack Frame

Caller's Stack Frame

Arbitrary Size alloca(3)?

OXFFFFFFFFFFFFFFFF

Unused

char *buffer = alloca(size)

Size_trzie
char tmp[8]
Stack Canary
Return Address

Local Variable

Return Address

Stack Pointer

Current Stack Frame

Caller's Stack Frame

Arbitrary Size alloca(3)?

OXFFFFFFFFFFFFFFFF

Unused

Stack Pointer

AAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

Size_trzie

Current Stack Frame

char tmp[8]
Stack Canary
Return Address

Local Variable

Caller's Stack Frame

Return Address

Arbitrary Size alloca(3)?

OXFFFFFFFFFFFFFFFF

Unused

Size_trzie
char tmp[8]
Stack Canary
Return Address

Local Variable

Return Address

Stack Pointer

Current Stack Frame

Caller's Stack Frame

Arbitrary Size alloca(3)?

OXFFFFFFFFFFFFFFFF

Guard Page

Thread Stack

Guard Page

Thread Stack

Guard Page

Thread Stack

Guard Page

Other Thread Stack

Current Thread Stack

Arbitrary Size alloca(3)?

OXFFFFFFFFFFFFFFFF

AAAA

Guard Page
Tnread Stack
Guard Page
Thread Stack
Guard Page

Thread Stack

Guard Page

Other Thread Stack

Current Thread Stack

Arbitrary Size alloca(3)?

OXFFFFFFFFFFFFFFFF

AAAA

Guard Page

Thread Stack

Guard Page

Thread Stack

Guard Page

Thread Stack

Guard Page

Other Thread Stack

Current Thread Stack

Arbitrary Size alloca(3)?

» Turned this arbitrary size alloca(3) into a Stack Clash bug
L How to convert this Stack Clash into Read/Write primitives

» Overcame lots of exploitation obstacles:

| Unstable memory layout

| The write primitive has side effects..

__ Determining the right moment to overwrite while all other threads

continually spin

| Mslookup |

Exploiting the Stack Clash
Stably

» The */nslookup’ is implemented by calling gethostbyname_r(3)

L We run a customized DNS server and delay the response
L This allows us to control the timing of the write!
L Leak the stack pointer to bypass PIE & ASLR
L Write the return address to control the PC

We Completed All Tasks on 9/19

SONOS

14.16

Release date: 9/20/2022

In this update:

« When connected to Wik, Roam and Roam 5L stereo pairs can now play stereo audio from
Bluetooth sources, These stereo pairs will no longer separate when switching to Bluetooth

mode,

« Bug fixes and performance enhancements.

Understanding system
leads to real bug

No bug? WTF Bug was FAKE

Understanding system
leads to real bug

No bug? WTF Bug was FAKE

Bug was patched

2022 - Our Third Year

e Have to discover new attack surfaces:

L The product integration part with Open-Source sounds good!

Insecure Callbacks

« XML Parser - libexpat

| Assume it's safe because it's used worldwide

| Butisits usage also?

voild XML_SetElementHandler (
XML_Parser p,
XML_StartElementHandler start,
XML_EndElementHandler end

)5

void start(void *userData, char *tag_name, char *xattrs) {
(!strcmp(tag_name, "block")) {
userData->block_1index 1;
(userData->block_index 10)

b

userData->blocks[block_index] (Block *)malloc(0x4070);
} (!strcmp(tag_name, "param")) {
block userData->blocks[userData->block_index];
strilicpy(block->names[userData->param_count], name, name_len);
strilcpy(block->values[userData->param_count], val, val_len);

}

void end(void xuserData, char *tag_name) {

}

<root>
<block>
<param AAA="BBB">FOO</param>
<param CCC="DDD">BAR</param>
</block>

<block>
<param EEE="FFF">BAZ</param>
</block>
</root>

<root>

<block>
<block>
<block>
<block>
<block>
<block>
<block>
<param AAA="BBB">FOO</param>
<param CCC="DDD">BAR</param>
</block>
</block>
</block>
</block>
</block>
</block>

</block>
</root>

2022 - Our Third Year

* Bugs:

(silent fixed)

2. Insecure callback leads to OOB-Write

L Payloads can't consist of any non UTF-8 characters due to the XML spec
L Have to bypass PIE/ASLR/Stack-Cookie first

soapaction get_header (request, "soapaction");
useragent get_header (request, "user—-agent");
size __snprintf_chk(buffer, 4096, 1, 4096,
"POST %s HTTP/1.1\r\n"
"CONNECTION: close\r\n"
"HOST: %s:%d\r\n"
"USER-AGENT: %s\r\n"
"CONTENT-LENGTH: %zu\r\n"
"CONTENT-TYPE: text/xml; charset=\"utf-8\"\r\n"
"SOAPACTION: %s\r\n"
||\r\n||,
path,
host,
port,
useragent,
body_size,
soapaction);
str.data buffer;
str.size size;
send_request(&client, &str, 1, NULL, NULL, ..)

2022 - Our Third Year

* Bugs:

(silent fixed)

2. Insecure callback leads to OOB-Write
L Payloads can't consist of any non UTF-8 characters due to the XML spec

L Have to bypass PIE/ASLR/Stack-Cookie first

3. Unchecked return value of °__snprintf_chk’ leads to info leak

Chained All Together Around 10/18

SONOS

14.18

Release date: 10/18/2022

In this update:

« Bug fixes and performance enhancements, including a fix for an audio quality issue that
reduced Sub output for Arc, Beam, or Ray when paired with a Sub or Sub Mini while Trueplay

was enabled.

System requirements

2022 - Our Third Year

* Bugs:

(silent fixed)

(silent fixed)

3. Unchecked return of "__snprintf_chk’ leads to info leak

RCrashdumpUploader?

* We have been aware since 2020

1. POST to ‘crash-upload.ws.sonos.com’ every 5 minutes

2. Did the Sonos review the crashdump?

L. We don't know because things went too well last year

L But that's the most reasonable explanation at that time

2022 - Our Third Year

» Accept it, we still have time (~1.5 months)... (Sigh)

RUN OUT OF ALL IDEAS...

)

Unsuccessful Attempts

 Audio Codec: * Server/Service:
L Fuzz OSS libraries L Web/WebSocket server
L Review the integration parts L. SNTP/mDNS/UPnP/... services

« SOAP Implementations: L Communication between services
L Review SOAP Parser L.

L Review all SOAP actions
L Review the deserialization process
L Review URL clients (HTTP/CIFS/WS/SSDP/RTSP/..)

i

2 WEEKS lEFT

Review Bugs We Have So Far

1. What's the root cause?
2. Why it happened during the development process?

3. How to discover the variant?

2021 - My First Fake Bug

size_ t read_size 1;
my_tsclient_read(ctx, &dlen, &read_size, timeval);

dlen (unsigned __1nt8) dlen;
(dlen) {

char *xbuffer alloca(dlen);

my_tsclient_read(ctx, &buffer, &dlen, timeval);

After the Patch of October
2022

size_ t read_size 1;
my_tsclient_read(ctx, &dlen, &read_size, timeval);

dlen (unsigned __1nt8) dlen;
(dlen) {

char buffer[184] {0};

my_tsclient_read(ctx, &buffer, &dlen, timeval);

AAARAAAAARAAAAAARAAARARAARAARARAAAAAARAAAAAF
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAL
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAF
V.V V. V.

Summarize Our Third Year

1. Glad that | didn't give up until the last moment

2. Self-reflections:

L Coverage should be more comprehensive, such as:

L Lifetime-style bugs / my overlooked unsafe string operation bug last year

L Didn't review the ‘libsmb2" because the name "SMB" scared me

L All other teams are targeting it

L Remember to cut off the Internet (set-up a good LAB environment)

Conclusion

1. Persistent is the key

__ Targeting the same targets for 3 years

__ Reversing day and night for 3 months

Conclusion

1. Persistent is the key

__ Targeting the same targets for 3 years

__ Reversing day and night for 3 months

2. On the right path is even more important

L A good idea or good attack surface

Chose a Good Attack Surface

* Bugs:

1.

o AW

Size-checking error in firmware parser leads to Stack Overflow
Integer Underflow in MP3-1D3v2 tag parser leads to Stack Overflow
Arbitrary size ‘alloca(3) in MP4-Box parser leads to Stack Clash
Insecure ‘libexpat’ callback leads to OOB-Write

Unchecked return of *__snprintf_chk’ leads to info leak

Fixed buffer size in MPEG-TS parser leads to Stack Overflow

2. Integer Underflow in MP3-1D3v2 tag parser leads to Stack Overflow
3. Arbitrary size "alloca(3) in MP4-Box parser leads to Stack Clash

6. Fixed buffer size in MPEG-TS parser leads to Stack Overflow

Persist! Persist! Persist!

Until You found the right path

Be proud of your Death Count!

The more you die, the more you're learning.

Keep going!

Celeste - "Games for Impact”of The Game Awards 2018

DE\/CORE

B orange@chroot.org
. https://blog.orange.tw

	start
	投影片 1
	投影片 3: About This Talk
	投影片 4: About This Talk
	投影片 5: Orange Tsai

	Introduction
	投影片 6: Why I am Targeting Sonos?
	投影片 7: Before the Journey

	2020
	投影片 8: Pwn2Own Tokyo 2020
	投影片 9: 2020 - Our First Year
	投影片 10: Web Interface of Sonos
	投影片 11: Web Interface of Sonos
	投影片 12: Web Interface of Sonos
	投影片 13: SoCo: Sonos Controller
	投影片 14: SoCo: Sonos Controller
	投影片 15
	投影片 16
	投影片 17: Collecting Firmwares
	投影片 18: BeginSoftwareUpdate
	投影片 19
	投影片 20: Attacking Firmware OTA
	投影片 21: Attacking Firmware OTA
	投影片 22: Exploiting Firmware Parser
	投影片 23: Summarize Our First Year

	2021
	投影片 24: Pwn2Own Austin 2021
	投影片 25
	投影片 26: Dumping the Firmware
	投影片 27
	投影片 28: "The USB interface of the USB3380 is however disabled by default and the device would need to be flashed before it's enabled"
	投影片 29: "The USB interface of the USB3380 is however disabled by default and the device would need to be flashed before it's enabled"
	投影片 30: Struggling with USB3380EVB
	投影片 31
	投影片 32: BIOS Mini PCIe Whitelist…😅
	投影片 33: Bypass BIOS whitelist check
	投影片 34
	投影片 35: 2021 - Our Second Year
	投影片 36: 2021 - Our Second Year
	投影片 37: 2021 - My First Bug
	投影片 38: 2021 - Bug #1
	投影片 39: 2021 - My First Bug
	投影片 40: 2021 - My First Bug
	投影片 41: 2021 - My First Fake Bug
	投影片 42
	投影片 43
	投影片 44
	投影片 45
	投影片 46
	投影片 47: 2021 - My Real Bug
	投影片 48: 2021 - My Real Bug
	投影片 49: 2021 - My Real Bug
	投影片 50: 2021 - My Real Bug
	投影片 51: 2021 - My Real Bug
	投影片 52: Summarize Our Second Year

	2023
	投影片 53: Pwn2Own Toronto 2022
	投影片 54: Pwn2Own Toronto 2022
	投影片 55: Pwn2Own Toronto 2022
	投影片 56: 2022 - Our Third Year
	投影片 57: 2022 - Our Third Year
	投影片 58: 2022 - Our Third Year
	投影片 59: Arbitrary Size alloca(3)?
	投影片 60: Arbitrary Size alloca(3)?
	投影片 61: Arbitrary Size alloca(3)?
	投影片 62: Arbitrary Size alloca(3)?
	投影片 63: Arbitrary Size alloca(3)?
	投影片 64: Arbitrary Size alloca(3)?
	投影片 65: Arbitrary Size alloca(3)?
	投影片 66: Arbitrary Size alloca(3)?
	投影片 67: Arbitrary Size alloca(3)?
	投影片 68: Arbitrary Size alloca(3)?
	投影片 69: Exploiting the Stack Clash Stably
	投影片 70: We Completed All Tasks on 9/19
	投影片 71: Done all the things on 9/19
	投影片 72
	投影片 73
	投影片 74: 2022 - Our Third Year
	投影片 75: Insecure Callbacks
	投影片 76: Insecure Callbacks
	投影片 77: Insecure Callbacks
	投影片 78: Insecure Callbacks
	投影片 79: 2022 - Our Third Year
	投影片 80: Insecure Callbacks
	投影片 81: 2022 - Our Third Year
	投影片 82: Chained All Together Around 10/18
	投影片 83: Chained all together on 10/18
	投影片 84: 2022 - Our Third Year
	投影片 85: 2022 - Our Third Year
	投影片 86: RCrashdumpUploader?
	投影片 87: 2022 - Our Third Year
	投影片 88
	投影片 89
	投影片 90: Unsuccessful Attempts
	投影片 91
	投影片 92: Review Bugs We Have So Far
	投影片 93: 2021 - My First Fake Bug
	投影片 94: After the Patch of October 2022
	投影片 95: After the Patch of Oct. 2022
	投影片 96: After the Patch of Oct. 2022
	投影片 97: Summarize Our Third Year

	end
	投影片 98: Conclusion
	投影片 99: Conclusion
	投影片 100: Chose a Good Attack Surface
	投影片 101: Chose a Good Attack Surface
	投影片 102: Persist! Persist! Persist!
	投影片 103
	投影片 104: Thanks!

